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EXECUTIVE SUMMARY

This report contains the three interim reports, together with the most recent results. In addition,
there is an Appendix. Part I describes the analysis on moving averages, variances and variograms for NIR
from a SPOT image of part of Fort A. P. Hill. The computer programs for these have already been provided
to the Topographic Engineering Center. The maps of the variances and the diagram of the variograms show
areas of the image that are not stationary and where kriging is likely to perform less well in prediction than
wavelet analysis. This proves the findings of Project PR-N 68171-98-M-5311. This section also includes the
analysis of a part of the image called ‘aphillcut’ to distinguish it from the larger section of image used that ahs
been used. This explored in detail any relation between elevation from a digital elevation model, the raw
elevation data and NIR and NDVI. The correlations are weak in spite of an apparent visual relation. The
strongest relation was between the moving averages for NDVI and elevation for a window of 10 x 10 pixels.

Part II describes the analyses of the hyperspectral ‘hymap’ data. This includes a correlation analysis, principal
component analysis (PCA), variography, mapping, multivariate non-hierarchical classification and factorial
kriging. The results illustrate the difficulty of deciding how many and which wavebands to retain. Certain
groups reappear in different analyses, but equally there are less stable groupings. The PCA results are not
particularly discriminatory, whereas those for the raw variograms and certain classifications appear to identify
about eight groups of bands. The pixel maps show that even within these groups different information
emerges. Further interpretation of some of these results requires input from personnel at TEC.

Part IV of the report describes the analysis of the National Soil Inventory of England and Wales. The aim was
to compare geostatistical methods, mainly ordinary kriging and factorial kriging, with wavelet analysis on a
different kind of data from imagery. The data were from sampling locations on a 5-km grid and pH and zinc
were selected for analysis. The variogram of pH showed that there was long-range trend in the data, which
had to be removed for the geostatistical analysis whereas the wavelet analysis is not affected by it. Zinc was
markedly skewed and the data were transformed to common logarithms for the geostatistical analysis, which
again was not necessary for the wavelet analysis. The results have shown some interesting features. There
appears to be no local non-stationarity in these data, which meant that kriging performed better than the
wavelet analysis in terms of the distribution of the errors for the 10-km subsample. However, for the 40-km
subsample the wavelet analysis performed better. The variograms for both properties were nested and the
short-range variation was evident in the high frequency wavelet transform for the 20-km grid. The variogram
can provide a guide as to what sampling interval should be focused on in a multiresolution analysis using

wavelets.

Part IV of the report of the project is a stand-alone piece of work, mainly prepared by Professor Richard
Webster. This is an aide memoire for sampling. It embraces both design-based sampling, which is based on
classical statistics, and model-based sampling which is underpinned by geostatistics. This work is a guide to
sampling field-based information or

pixels from images. It starts with what the user should consider before sampling, i.e. the target population, the
sample support (volume of sample), the individuals, what the data are to be used for, what kind of predictions
are required. Based on the kind of predictions required the user will decide either to have a sample design for
design-based estimation or one for model-based prediction.
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PARTI: MOVING AVERAGES, VARIANCES AND TILED VARIOGRAMS FOR
FORT A.P. HILL

This first section of the report contains several sections of work. The analysis and computer
programs for the first part of the report on the moving averages, variances and variograms were
completed in the previous project. There was insufficient time, however, to complete the written
part of this work. The complete section is now included although files of the results and computer
programs had been sent to TEC in digital form. Four days of the present contract were spent
working at the Topographic Engineering Center and one day at the Virginia Institute of Marine
Science. In addition time has been spent on the wavelets and kriging paper for submission to the
Proceedings of the Sixth International Geostatistics Congress. This paper can only be accessed on
CD-Rom at present, the published proceedings will come out in 2001. The rest of this report will
comprise work done on the image and digital elevation model for Fort A. P. Hill, and on the latest
hyperspectral imagery.

Moving averages, variances and tiled variograms

The computation of a variogram for a region carries with it the implication that the underlying
variation is stationary in the intrinsic sense. The analyst assumes that the expected differences
between places, at least for small lag distances, are zero and that the expected squared differences

are constant for any given lag:

E[Z(x) - Z(x +h)] =0 )
and E[{Z(x) - Z(x + h)}?] = 2y (h). | 2)

Here, in the usual geostatistical convention, Z(x) and Z(x+h) are the values of the random variable
Z at positions x and x+h, where h is the lag, and y(h) is the semivariance at that lag.

The equations above refer to the random process Z(x), and in any one realization the actual values
depart from its expectation. Geostatisticians are used to this and accept Equation (1) without demur
in many instances. Equation (2) is assumed to hold everywhere; i.e. the semivariance depends on
the lag only and not on the position. Geostatisticians are used to this too; usually they have too few
data to explore its validity. Remote images from satellites, each comprising several hundred
thousand pixels, however, may cause us to question the assumption when some parts of an image
are plainly more variable than others. The SPOT image of AP Hill is one such; Figure 1, a pixel
map of NIR, is an example. This is the part of A. P. Hill that we examined originally. With so many
data we can examine the changes in the variogram over the region, and the result can help us to
decide whether our assumption of stationarity is reasonable.
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Figure 1. Pixel map of NIR for the original part of the SPOT image for Fort A. P. Hill.

The coordinates are given as UTMs.

Analysis

We computed three sets of criteria to evaluate the likely stationarity; the moving average, the
moving variance, and the local variogram. The first two are defined as follows.

Moving average. This is computed by placing over the image a window containing » pixels and
summing the values of NIR within the window:

1 n
2(x) =, 27(x.)- ©)

where z(x;) is the value of the ith pixel in the window, and x. denotes the centre of the pixel. The
window is moved one pixel at a time, and at each new position z(x ) is computed. In this way a
map of moving averages is built.

Moving variance. The moving variance, (c#(x.), is computed in an analogous way from

1 n
o’ (x)) = L {x) ~EY. “)




Again, a map of the local variances can be made.

Local variogram. Semivariances can be calculated for a window from

m(h)

1 )
y(ho) = g 24200 — 2, + By, 5)

=

where the index j refers to those pixels for which a paired comparison is possible at the particular
lag h, and m(h) is the number of such comparisons.

Computing local variograms for the same windows as for the average and variance runs into some
difficulties.

1. Experimental variograms are unreliable with fewer than about 100 data. So it has seemed
unreasonable to attempt to compute them for small windows, i.e. less than 10 x 10.

2. They are time-consuming, though not so time-consuming as to make the task impossible on a
modern workstation.

3. Displaying the hundreds of thousands of variograms is fraught.

So, instead of moving the window one pixel at a time we divided the image into square tiles
without any overlap. Also, to provide an intelligible display we chose tiles of 15 x 15 = 225 pixels.
From experience we know that this size of sample estimates the local variogram well. We then
computed the variogram to a maximum lag of 12.5 pixels.

Results

We computed the moving averages and moving variances for square windows of sides 3, 5, 7, 9,
11, and 15 pixels. The results are displayed in Figures 2a to 7a. In Figure 2a (3 x 3 window) the
features in the original image, Figurel are still visible. For example the lakes in the north and
centre (blue areas) and the line of the road running N-S (green). The latter is not as evident as in
Figure 1. In Figure 3a (5 x 5 window) the lakes are still evident, but the outline is no longer distinct
and the line of the road is barely visible. As the window widens further, Figures 4a to 7a, the coarse
features of the image become increasingly apparent. The map for the window of 9 x 9 pixels is very
similar to that for the long-range structure from factorial kriging (see previous final report). There
is little evidence of non-stationarity.

The margins of the maps, which broaden as the window increases in size, are the global average.
This value is given when the window dimensions cannot be fitted due to edge effects.

Analogous maps of the moving variances are shown in Figures 2b to 7b. These tell a different
story.




The smallest window, 3 x 3 = 9 pixels, shows local, mostly sinuous, patches of image where the
variance is much larger than the general background, Figure 2b. In particular the variances are large
at the margins of the lakes, and their shape is evident. Increasing the window to 25 pixels leaves a
basically sinuous pattern, but with the patches of large variance beginning to broaden, Figure 3b.
This broadening continues as the window is enlarged, and the sinuosity has almost disappeared and
is confined to patches of medium variation with the window of 81 pixels, Figure 5b. The patches of
large variance appear as blobs, as they do with the wider windows. As for the maps of the moving
averages, the uniform bands at the margins are of the global variance.

Figure 8 shows the variograms in their corresponding tiles, and so is effectively a map. In each tile
the experimental variogram appears as the set of points, the left-most of which is at the origin and
the right-most at a lag of 12.5 pixels is scaled so that it lies near the right hand margin of the tile.
The ordinates are scaled in the range 0 to 20 000 NIR?. The horizontal line through the points is the
local variance of the data. The full image is 151 pixels (columns) 178 (rows). The width of the tiles,
15 pixels, will not divide exactly into either, and so there are gaps at the right and top

of the image.

Over most of the image the local variance is small, and it is difficult to see what autocorrelation
there is. In a relatively few squares, however, the variance is evidently strongly structured. These
squares also happen to be the ones with the largest variances, and perhaps it is because they have
the large variances that it is possible to display the results in an informative way.
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Figure 2. Pixel maps of NIR (Fort A. P. Hill): a) moving averages and b) moving variances,

for blocks of side 3.




a) Moving averages for block side 5
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Figure 3. Pixel maps of NIR (Fort A. P. Hill): a) moving averages and b) moving variances,
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a) Moving averages for block side 7
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Figure 5. Pixel maps of NIR (Fort A. P. Hill): a) moving averages and b) moving variances,
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a) Moving averages for block side 1
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Figure 6. Pixel maps of NIR (Fort A. P. Hill): a) moving averages and b) moving variances,
for blocks of side 11.
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a) Moving averages for block side 15
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Figure 7. Pixel maps of NIR (Fort A. P. Hill): a) moving averages and b) moving variances,
for blocks of side 15
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AP Hill variograms 15 pixels x 15 pixels
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Figure 8. Mosaic of variograms that correspond to the square windows of 15 x 15 pixels.
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Conclusions

The maps of moving average show increasingly clearly the coarse features of the image as the
moving window is widened. There is little evidence of trend and none sufficient to suggest that the
generating process is non-stationary. The maps of moving variance, however, reveal small patches
where the variation is much larger than over most of the image. They suggest that the process is not
stationary locally in the variance and that the intrinsic hypothesis should not be assumed.

The steeply sloping local variograms confirm this view. It was precisely in these areas of local non-
stationarity that the wavelet analysis performed better than kriging in the data reconmstruction
(Oliver et al. 2000). One thing that we shall try later in this project is to use a moving variogram
for kriging to compare with the wavelet results.

REPORT ON VISIT BY DR OLIVER TO TEC JUNE 14-21 2000

Part of the first morning was spent with Mr J. Shine and Mr E. Bosch discussing how the time
should be spent during the visit. Several things were achieved at TEC during the four and a half
days that I was there.

1) Mr Shine and I started work again on a short paper for the International Journal of Remote
Sensing. This is now almost complete and needs the final conclusions to be added. The figures
are now complete; the final variogram was fitted by a triple spherical function. This paper will
be ready to be sent to the Journal in the near future.

2) In addition I went through various Genstat routines with Mr Shine. In trying to krige part of an
image the program gave us an error message about the grid size. Since my return to England I
have contacted Rothamsted Experimrntal Station where Genstat is developed and I was told
that this has been resolved in the new version of the product which TEC is shortly to receive
when the license is renewed.

3) In discussing the results of comparing the digital elevation model with the image data I
discovered that the original data for elevation were available without having been smoothed by
some form of interpolation. We extracted those using Imagine with some help for the area
where we have been working. These data have now been re-analysed, but there is little
improvement in the correlations.

4) Jim Shine and I were fortunate enough to have a meeting with Colonel Jack Marin from West
Point. He showed us some ways of dealing with hyperspectral imagery using neural networks.
We have started to analyse the ‘hymap’ data and we hope that the variogram will identify bands
that describe different ground textures.

5) Mr E. Bosch and I worked on the soil data from England and Wales. He has done a wavelet
analysis of a selected part of the data in the central part of the country. I did the factorial kriging
of the same area to compare the wavelet analysis for the multispectral analysis. We shall
continue with this work when Mr Bosch visits England in August.

6) I spent one day at the Virginia Institute of Marine Science. Kevin Slocum is registered as a PhD

student there and I am one of his PhD committee members. His oral examination took place on
June 16™. It was successful and from my perspective interesting. In the afternoon I gave a

12
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lecture which included some general geostatistics, but mainly focused on the work that I have
been involved in at TEC. I presented the factorial kriging analysis of Fort A.P.Hill and also the
latest work on wavelets. The ensuing discussion was lively.

One outcome of this visit was a request to teach a short geostatistics course there.

FORT A. P. HILL: APHILLCUT

In the previous final report we examined the digital elevation model for 5-m and 20-m resolutions.
Although there appears to be a relation between NIR and elevation visually this was not proved by
the correlation coefficients that we computed, which were small. Mr Shine and Dr Oliver selected a

section of the image that we had been working on that minimized the areas of hard-standing
because we felt that these could be reducing the overall correlation.

Figure 9a shows pixel map of NIR for the part of the image called aphillcut: it is in the north
western part of the original image, Figurel. It is an area of 76 x 83 pixels compared with the 151x
178 pixels of the original image: it is half the area. Figure 9b shows the pixel map of NDVI
(Normalized Vegetation Index). The maps show similar patterns of variation. Variograms were
recomputed and modelled for NIR and NDVI, Figure 10a and b, respectively. They show the
experimental semivariances as symbols and the solid lines are the fitted models. Table 1 gives the
model parameters. They were both fitted best by nested spherical functions, and their distance
parameters are very similar: the short-range component is near to 140 m and the long-range one is
about 230 m. The latter is shorter than that for the larger image possibly because we have fitted the
model to a shorter overall lag distance because the experimental variograms became slightly

irregular.

Table 1. Model parameters for selected properties
Variable Model Model parameters
Co C1 €2 a1 @ a
Sub- Stable 0.00 105.7 5.653 1.63
sampled exponential 3
DEM
NIR Double 0.00 115.4 109.1 6.577 10.49
spherical
NDVI Double 0.00 6.940 11.72
spherical : 0.002707  0.002187

Note: cp is the nugget variance, ¢; and ¢ the sills of the autocorrelated variance, a; and a, the
range of spatial dependence and ¢ is the exponent parameters for the stable exponential model.

13
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Figure 9. Pixel maps of part of the SPOT image “aphillcut’ for a) NIR and b) NDVIL.
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Figure 10. Experimental variograms and fitted model for a) NIR and b) NDVI, using the
data from ‘aphillcut’.
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The original digital elevation model for this area was at a 5-m resolution. We sub-sampled this to
obtain information at the same resolution as the SPOT image (20-m). At the time that these data
were analysed we did not know that the DEM comprised interpolated data from 30-m resolution
measurements of elevation. Both the 5-m and 20-m data elevation data showed strong trend as for
the larger area. The trend was modelled by linear, quadratic and cubic functions fitted to the
coordinates. Table 2 shows the proportion of the variance accounted for by the three functions for
both data sets. Five transects along rows and columns of the data were selected from the image for
a wavelet analysis by E. Bosch. These were also examined for trend. Table 3 gives the percentage
variance accounted for by trend. It is clear that the trend is quite variable from place to place.

Table 2. Trend analysis for the original and sub-sampled DEM data.
% variance accounted for
Linear Quadratic Cubic
Full DEM data 15.7 % 31.7% 41.7%
Sub-sampled DEM’ 14.5 % 30.2 % 40.4 %

"DEM data was sub-sampled to match the co-ordinates of the spectral values from the SPOT data.

Table 3. Trend analysis for transects taken from the full DEM data.
Transect % of variance accounted for by
trend
Transect 1: along y axis 5.8
Transect 2: along y axis 41.5
Transect 3: along x axis 16.5
Transect 4: along x axis 21.3
~ Transect 5: along y axis 30.1

The variogram was computed for the 20-m elevation data using the residuals from the cubic trend
function. Figure 11 a shows the experimental variogram. It is upwardly concave near to the origin
and the usual models that we fit were not appropriate. Since we consider the Gaussian model to be
unreliable we have fitted a stable exponential function whose equation is given by

ha
P
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Figure 11.  a) Experimental variogram for the elevation data for ‘aphillcut’, b) the fitted stable

exponential model where the exponent was 1.6.

where ¢ is the sill variance, 4 is the lag and « is an exponent that must be less than 2. Figure 11b
shows the experimental semivariances and the fitted stable exponential model for elevation. Table 1
gives the model parameters. The approximate working range for the exponential function is 340 m.

To use this variogram the kriging program had to be amended, as we have not used it before for
kriging. Kriging was done on the residuals (for the 20-m data) because the presence of trend
violates the assumptions of geostatistics. After kriging the trend was added back to the estimates
using the residuals. Figure 12 shows the kriged estimates of elevation for the ‘aphillcut’ area. A
visual inspection of the maps for NIR (Figure 9a) and Figure 12 shows that the valley systems in
the DEM correspond with the large NIR values, while the interfluves have intermediate NIR
values.

For the correlation analysis the raw elevation data on a 30 m grid were used, Figure 13. They were
compared with coincident pixel information for NIR and NDVI, Figure 14a and b. Figure 15a and b
shows the maps of the differences between the elevation data and the pixel information from the
SPOT image. Table 4 shows that these correlations between the raw data are small. Since we know
from experience that local noise in data can sometimes obscure relations between variables we
computed the correlation coefficients between the punctually and block kriged estimates and
moving averages for the DEM, NIR and NDVI. Figures 16 and 17 show the moving averages for
these variables for the 10 by 10 window. The strongest relation, albeit still weak, is between the
DEM and NDVI for the moving average computed with a window of 10 x 10 pixels. It is evident
that the visual relation between the observed pattern in the image data and the DEM does not
appear to be as strong statistically as visually.
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Figure 12. Map of punctually kriged estimates of elevation using the stable exponential model for

‘aphillcut’.
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Figure 13. Pixel map of original (raw) elevation values on the 30 m grid for ‘aphillcut’.
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Figure 15. Differences between pixel values and elevation values for a) NIR, and. b) NDVL
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Figure 16. Pixel map of the moving average for a block of 10 x 10 pixels for elevation for
‘aphillcut’.
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Figure 17. Pixel map of the moving average for a block of 10 x 10 pixels for a) NIR and b) NDVI,
for ‘aphillcut’.
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Table 4. Correlation coefficients for DEM, NIR and NDVIL.
Property 1 Property 2 Correlation
coefficient
DEM NIR -0.172
DEM NDVI -0.175
DEM residuals NIR -0.034
DEM residuals NDVI -0.042
Block kriged DEM Block kriged NIR 0.235
Block kriged DEM Block kriged NDVI 0.219
DEM moving average: NIR moving average: -0.197
block side of 3 block side of 3
DEM moving average: NDVI moving average: -0.203
block side of 3 block side of 3
DEM moving average: NIR moving average: -0.315
block side of 10 block side of 10
DEM moving average: NDVI moving average: -0.330

block side of 10

block side of 10

Summary

20

The purpose of this detailed investigation between the DEM information and the image data was to
assess the strength of their coregeonalization. If it had been stronger it could have been used to
restore compressed image information using cokriging. The coregionalization is too weak to exploit

in this area, but it might be worth considering elsewhere.
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PARTII HYPERSPECTRAL IMAGERY

The hyperspectral imagery of part of Fort A. P. Hill, Virginia, was sent as ‘hymap’ data
in May. However, some errors were found in the original data after the analysis presented
in the first interim report. Therefore, that analysis has been completely redone as part of
the new analysis. The spectral information had been subdivided into 126 bands, and the
pixel size is 7 m x 7m. The area examined in the report is a subset of the SPOT image
examined previously. It corresponds with ‘aphillcut’, which is a subset of the SPOT
image used for making comparisons with the digital elevation model (DEM) in more
detail (see pages 15 to 22). Our aim in this investigation is to determine whether some of
the bands duplicate information using principal components analysis, a non-hierarchical
classification, the variogram, pixel maps and factorial kriging.

Correlation matrix

The correlation matrix was computed as part of the principal component analysis on a
reduced data set of one pixel in a block of 9. Appendix 1 gives the correlation matrix.
There are groups of bands with correlations greater that 0.8 showing strong relations
among the bands. The most obvious groups that emerge are: bands 1 to 18, 20 to 61, 96
to 125, which is also correlated with bands 1 to 18, and 66 to 94. It is difficult to identify
more subtle groupings, but those identified emerge in other analyses described later.

Is it also likely that these will contain similar spatial information?.

Principal Components Analysis

Prinicpal components analysis (PCA) is a multivariate analysis that aims to reduce the
dimensionality of the data to explore the relations among variables. For this reason it has
been widely used for exploring hyperspectral imagery as a means of limiting the number
of bands used for further analysis. However, this approach might not be entirely
satisfactory because some potentially valuable information might be excluded from
further analysis (Green et al., 1988; Chang and Du, 1999).

The PCA was done on the correlation matrix between all of the bands (see Appendix 1).
The questions posed are:

Can the number of bands containing relevant information be reduced by examining the
correlation matrix or by a PCA?

Do the strongly correlated bands imply that from a spatial context these are mainly
redundant and that we can look at one to obtain the information of value?

We shall examine some of the strongly correlated bands to assess whether this is so.

Tables 5 and 6 give the results of the principal component analysis (PCA). Table 5 gives
the latent roots or eigenvalues of the first ten principal axes. The first two account for just
over 90% of the variation, Table 5. This is an expression of the extent of correlation
between the wavebands. Table 6 gives the latent vectors for the first five principal axes
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only since those for roots 6 to 10 account for so little of the variation. For PC1 bands 18
to 19, 61 to 62, 66 to 94 and 99 to 122 have large latent vectors. For PC2 bands 20 to 59
have large values, and for PC3 it is bands 1 to 13. For PC4 bands 63 to 66, and band 95
have large latent vectors and for PCS5 it is band 126. For PCs 6 to 10 the wavebands that
have large values for PCs 4 and 5 dominate; little new information appears to emerge.
The limiting values of the latent vectors have been chosen by eye, based on the level at
which there is an abrupt change to a smaller value.

Figure 17 shows the spectrum of a range of ground cover types. In general they have a
similar form with distinct changes occurring at certain points in the spectrum for most
ground cover types. It is interesting to observe that boundaries or changes occur at
waveband positions: 13, 18, 35 to 37, 47, 58, 60, 63, 70 and 94. These have some
association with the groupings of the wavebands that have large latent vectors for PCs 1
and 2, and is what we might expect.

Table 5 Selected latent roots or eigenvalues of the correlation matrix for the
hyperspectral image data

Latent Latent roots % variance
Roots

1 83.65 66.39
2 33.40 26.51
3 3.90 3.09
4 1.93 1.53
5 0.71 0.56
6 0.41 0.33
7 0.37 0.30
8 0.29 0.23
9 0.26 0.20
10 0.20 0.16
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Table 6. Latent vectors or eigenvectors of the correlation matrix for the
hyperspectral image datafor the first five principal components.

CONOIGTHLEWN-

PC1

1.0000
-0.0782
-0.0764
-0.0773
-0.0779
-0.0791
-0.0830
-0.0894
-0.0924
-0.0928
-0.0905
-0.0889
-0.0888
-0.0883
-0.0873
-0.0863
-0.0855
-0.0875
-0.1008
-0.0994
-0.0802
-0.0681
-0.0641
-0.0628
-0.0630
-0.0633
-0.0637
-0.0636
-0.0634
-0.0635
-0.0641
-0.0641
-0.0650
-0.0661
-0.0674
-0.0700
-0.0709
-0.0712
-0.0710
-0.0703
-0.0692
-0.0686
-0.0682
-0.0681
-0.0686
-0.0699
-0.0718
-0.0762
-0.0810
-0.0837
-0.0849

PC2
2.0000
-0.0654
-0.0900
-0.0928
-0.0945
-0.0944
-0.0857
-0.0636
-0.0507
-0.0526
-0.0682
-0.0780
-0.0823
-0.0869
-0.0910
-0.0959
-0.0993
-0.0956
-0.0423
0.0472
0.1091
0.1298
0.1352
0.1369
0.1373
0.1374
0.1373
0.1377
0.1382
0.1382
0.1379
0.1378
0.1368
0.1358
0.1344
0.1317
0.1303
0.1302
0.1309
0.1317
0.1331
0.1339
0.1344
0.1345
0.1338
0.1322
0.1204
0.1237
0.1155
0.1102
0.1082

PC3
3.0000
0.2224
0.2281
0.2191
0.2117
0.2071
0.2101
0.2157
0.2129
0.2039
0.1914
0.1774
0.1626
0.1474
0.1360
0.1224
0.1101
0.1022
0.1097
0.1084
0.1058
0.1019
0.0955
0.0949
0.0898
0.0852
0.0806
0.0766
0.0737
0.0708
0.0668
0.0666
0.0589
0.0591
0.0482
0.0441
0.0406
0.0373
0.0340
0.0322
0.0343
0.0348
0.0333
0.0327
0.0286
0.0235
0.0180
0.0085

-0.0057
-0.0139
-0.0189

PC4
4.0000
0.0912
0.0312
0.0249
0.0196
0.0142
0.0111
0.0071
0.0044
0.0057

-0.0003
-0.00563
-0.0054
-0.0040
-0.0159
-0.0122
-0.0124
-0.0115
-0.0188
-0.0032
0.0129
0.0254
0.0309
0.0265
0.0281
0.0273
0.0250
0.0252
0.0254
0.0233
0.0242
0.0243
0.0274
0.0140
0.0224
0.0123
0.0053
0.0036
0.0079
0.0112
0.0097
0.0077
0.0081
0.0060
0.0077
0.0090
0.0112
-0.0039
-0.0128
-0.0172
-0.0154

PC5
5.0000
-0.0746
-0.0266
-0.0165
-0.0115
-0.0184
-0.0358
-0.0694
-0.0818
-0.0744
-0.0731
-0.0646
-0.0525
-0.0395
-0.0577
-0.0309
-0.0156
-0.0139
-0.0791
-0.0731
-0.0250
0.0113
0.0278
0.0308
0.0330
0.0337
0.0345
0.0363
0.0385
0.0376
0.0386
0.0388
0.0430
0.0332
0.0413
0.0299
0.0242
0.0250
0.0316
0.0366
0.0378
0.0362
0.0389
0.0382
0.0399
0.0413
0.0406
0.0181
0.0058
-0.0052
-0.0041
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-0.0861
-0.0863
-0.0857
-0.0848
-0.0844
-0.0842
-0.0846
-0.0856
-0.0873
-0.0898
-0.0923
-0.0920
-0.0222
-0.0386
-0.0735
-0.0947
-0.1007
-0.1020
-0.1035
-0.1046
-0.1056
-0.1063
-0.1067
-0.1070
-0.1072
-0.1072
-0.1072
-0.1070
-0.1069
-0.1068
-0.1068
-0.1068
-0.1068
-0.1069
-0.1070
-0.1070
-0.1071
-0.1072
-0.1072
-0.1072
-0.1071
-0.1070
-0.1067
-0.1041
-0.0651
-0.0849
-0.0873
-0.0889
-0.0916
-0.0933
-0.0951
-0.0967
-0.0978
-0.0088
-0.0995
-0.1001

0.1060
0.1054
0.1067
0.1084
0.1091
0.1093
0.1084
0.1062
0.1022
0.0961
0.0883
0.0845
-0.0092
-0.0201
-0.0417
-0.0524
-0.0548
-0.0508
-0.0446
-0.0385
-0.0313
-0.0242
-0.0176
-0.0118
-0.0068
-0.0025
0.0010
0.0038
0.0063
0.0082
0.0091
0.0091
0.0087
0.0080
0.0061
0.0028
0.0005
-0.0019
-0.0040
-0.0068
-0.0093
-0.0115
-0.0122
-0.0133
-0.0817
-0.1015
-0.0999
-0.0960
-0.0903
-0.0873
-0.0836
-0.0794
-0.0759
-0.0729
-0.0705
-0.0681

-0.0256
-0.0262
-0.0266
-0.0275
-0.0298
-0.0306
-0.0320
-0.0371
-0.0433
-0.0516
-0.0606
-0.0660
-0.0652
-0.0758
-0.0876
-0.0924
-0.0816
-0.0810
-0.0844
-0.0856
-0.0868
-0.0887
-0.0902
-0.0904
-0.0899
-0.0912
-0.0914
-0.0937
-0.0936
-0.0937
-0.0933
-0.0916
-0.0894
-0.0889
-0.0855
-0.0851
-0.0827
-0.0817
-0.0830
-0.0828
-0.0819
-0.0833
-0.0827
-0.0810
-0.0375
-0.0266
-0.0254
-0.0299
-0.0374
-0.0251
-0.0203
-0.0168
-0.0138
-0.0153
-0.0166
-0.0204

-0.0111
-0.0135
-0.0149
-0.0124
-0.0093
-0.0116
-0.0147
-0.0142
-0.0156
-0.0176
-0.0131

0.0005

0.5980

0.5664

0.3890

0.1789

0.0605

0.0524

0.0201
-0.0049
-0.0192
-0.0234
-0.0234
-0.0260
-0.0299
-0.0266
-0.0273
-0.0240
-0.0274
-0.0288
-0.0277
-0.0286
-0.0311
-0.0283
-0.0361
-0.0329
-0.0345
-0.0355
-0.0356
-0.0377
-0.0433
-0.0434
-0.0445
-0.0462

0.2465

0.0329
-0.0140
-0.0146

0.0041
-0.0247
-0.0177
-0.0162
-0.0232
-0.0229
-0.0262
-0.0276

-0.0004
-0.0037
-0.0008
0.0044
0.0095
0.0093
0.0053
0.0073
0.0069
0.0056
0.0126
0.0333
-0.1605
-0.1191
-0.0471
0.0144
0.0059
0.0018
0.0216
0.0086
-0.0124
-0.0246
-0.0337
-0.0426
-0.0534
-0.0524
-0.0569
-0.0548
-0.0619
-0.0651
-0.0679
-0.0718
-0.0739
-0.0703
-0.0739
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Figure 18 Spectral information from the hymap image of part of A. P. Hill for six ground
cover types.

Non-hierarchical classification

For this multivariate classification (see Webster and Oliver, 1990) there is no assumption
that there is any hierarchy in the multivariate structure of the data. The majority of
multivariate methods of classification are based on a hierarchy of classes, such as nearest
neighbour, median clustering etc. Since there is no natural hierarchical structure in the
spectral data the non-hierarchical method was used. The subdivision occurs at one level
only, and the method is often known as dynamic clustering. Essentially the aim is to
minimize the variation within groups and maximize that between them based on a
selected mathematical criterion. These include the sum of squares (SSP) within classes,
Wilks’® criterion or the trace W'B, where W is the SSP matrix within groups and B is the
between-groups SSP matrix. The chosen test criterion is calculated after an arbitrary
partition of the data (or a pre-existing classification can be used if available), and
individuals are moved from group to group and the criterion calculated afresh each time.
The procedure continues iteratively until no improvement seems possible. In Genstat
(Genstat 5 Committee, 1993) local optimal solutions in the classification are avoided by
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changing to moving pairs of individuals and then returning to single ones again (see
Webster and Oliver, 1990 for more detail).

For this analysis I wanted to classify the wavebands and not the pixels, therefore I
selected the bands for just 52 pixels scattered over the image. These data were then
reorganised so that the bands appeared as the individuals and the pixels as the variables. I
used the three criteria given above, but the results for the sum of squares within criterion
was the only one to give a satisfactory result. This was because of the degree of
correlation in the data. To avoid possible problems from local optima I started with 15
classes and went in steps of one to six classes. The criterion value was plotted against the
number of classes, Figure19. The class at which the greatest change in the criterion value
occurred was selected. This was for 8 classes in this analysis. The wavebands belonging
to each class are given in Table 9. They show some relation with the bands associated
with the first 5 PCs, and also with the major changes in the spectrum, Figure18. It is
evident at this early stage of the analysis that some patterns are emerging.

2254
2064
175+
150+

125

I \
75+

Sums  ¢riterion

Figure 19. Sum of squares within criterion plotted against group size, g.
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Variography

Experimental variograms were computed from the full pixel information for all
wavebands, Figures 20 to 30. Several bands have variograms with similar forms. Overall
there appear to be six main shapes of variogram evident, disregarding the size of the
nugget and sill variances. The variograms within the following groups of bands appear to
be similar: bands (a) 1 to 17; (b) 20 to 62; (c) 63 to 64; (d) 19, 65, 71 to 94, 126; (e) 66 to
70, 95; (f) 96 to 125, 18 (see also Table 9). These show some relation with the groups
identified by the non-hierarchical classification and the PCA. Bands 63 and 64 have pure
nugget variograms, which are different from all of the others, and bands 95 and 126 also
have variograms that are different which also emerges in the results of the PCA.

The experimental variograms of bands 1 to 18 and 65 to 126 have a wavelike form which
suggests that there is some repetition in the variation at a distance of about 1000 m. We
can be fairly certain that this is not a sampling effect because of the large size of the data
set. This repetition is likely to relate to the nature of the physiography in the region, for
example the two large valley systems (see Figurel2).

Experimental variograms were also computed from the scores of the first five principal
components (Figure 31). The variograms for PC1 to PC3 resemble some of the main
structural features seen in the individual variograms, but not precisely so. The
experimental variograms for PC4 is pure nugget, which resembles the variograms for
bands 63 and 64, which also load heavily on this component. Therefore, we can interpret
this component as containing no spatial information. The variogram for PC5 shows some
structure, albeit little. It has a form similar to the variogram for band 126, which also
loads heavily on PCS5.

Overall the variograms suggest that there is little noise in the wavebands, apart from
bands 63, 64 and 126. This is of interest since most variograms show strong spatial
structure. The PCA also identified these wavebands that exhibit little structure.
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2000

e

Semivarionce

29

yoriogram fer bond 3

Semivarionce

B0 R X 0 10 M 0 8 N0
Log distonce / 7m

voriogram for bond &

Semariance

n 0 6 & W 1 W @ 1w N
Log distence / Tm

variogram tor bond 9

Semivariance

M0 KB B W 1M W 10 @ A0
tog dstonce / Tm

voriogrom fer band 12

%40 K B W 10 W 18 W N
Log dstance / Im




Semivariance

Semivariance

variogrom for bond 13

Lo
fov f,’"
2000
200
¢
o0+
%0
G0N @ % B 0 10 W 10 1 20
Log distance / 7m
vriogrom far band 16
00
00
o0
r
W0
N0 @ B K0 N M 1 1@ W
Lag dstence / Tm
veriogrom for band 19
900
L]
7000
8 o
2] H
g wo)
2 -
& a0
o0
0
100
N m % @ & ke ™ W 1w W
Log dstonce / Tm
variogrom for bond 22
©
g
2
£ N
5t
150000
10000
50000
M 40 K 0 K0 20 M 6 1 N0

Log distence / Tm

Semivarionce

Semivariance

Semwarionce

Semivariance

voriogram for bond 14

30 f
oo /'
el
o,
00
B % 0 I o t 1 W 2
Lag distance / 7m
veriogrom for band 17
B0
5000 f’
o
000 -‘,'
h
@1
10000
B K % B 6 1 W0 B X0
Log distonce / 7m
voriogrom for bond 20
)
175000
- //WN
§
12750001 &
100000
75000
00
2000
0 B @ 4 B N0 10 M 6 IR N0
Lag distonce / 7m
variogram lor bond 23
lmﬁ
400000 v
o /N-—\/‘\/
woq F
o0 7
20004,
150000
Y000
Er
O W 4 H ¥ K 10 W 16 W

Lag distance / 7m

Figure 21. Experimental variograms for bands 13 to 24.

45000

g

Semivarionce

30

voriagrom for band 15

/—\/ s
._/

Semivariance

X0 80 ® 10 10 w6 2
Lag distance / Tm

variogrem {or bond 18

S

Semivarionce

5 ° ] N L B P L A ) 8 20

Lag dislance / 7m

vorisgrom for bond 21

Semivarionce

g

100000

BOOKN 0 X K 0 @ o W X0
{ag dislonce / 7m

“varicgrom for band 24

B 40 0 L 001X 40 10 W0 20

Lag dstonce / 7m



variogron for bond 26

log distarce / Tm

Log distonce / 7m
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Figure 24. Experimental variograms for bands 49 to 60.
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Figure 25. Experimental variograms for bands 61 to 72.
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Figure 26. Experimental variograms for bands 73 to 84.
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Figure 27. Experimental variograms for bands 85 to 96
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Figure 29. Experimental variograms for bands 109 to 120
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Variogram modelling

Mathematical models were fitted to the experimental variograms of each band and the
principal components. Nested models, either spherical or exponential provided the best fit
to most of the variograms in the least squares sense. No attempt was made to model the
periodicity as the wavelength was fairly constant for those variograms showing signs of
repetition. The variograms of the bands and the first five principal components were
modelled to a lag distance that enabled a stable fit, lags of 60, 90, 95 and 100 were used.
Figures 32 to 43 show the experimental variograms as symbols and the fitted models as
lines. It is difficult to distinguish between the experimental values and the models in
many instances because of the density of the experimental values and the good fit of the
models.

Table 7 gives the parameters of the fitted models, and Table 8 the summary statistics of
the models fitted to the wavebands (not for the models fitted to the PCs). Apart from
bands 63 and 64 which are pure nugget the models are nested exponential or spherical
functions. Many models have no nugget variance, but for others it is large. To summarise
the features of the models the pure nugget variograms have been removed, but they were
included for later analyses. There are also considerable differences in the sill variances of
the models even within groups of variograms that have similar structures. For the
exponential models the distance parameter has been multiplied by 3 in Table 7 to give the
approximate range of spatial dependence. The first distance parameter of the nested
functions is remarkably similar throughout. It has a small range of between 25.2 m (7 x
3.6) for band 20 and 43 m (7 x 6.14 for band 95). The average is 34.3 m for the
wavebands and for PC1 it is 35.5 m (1.69 x 21). This corresponds closely with the short-
range structure identified from the 1 m imagery analysed and described in project report
N68171-97-C-9092. There is much more variation in the size of the long-range structure.
The smallest value for the long-range component is 185.5 m (7 x 26.5) and this extends
to a maximum of 994 m (7 x 142), which corresponds to the size of one of the structures
identified in the SPOT image for this area. The average long-range component is 422.6 m
(7 x 60.37).

The average nugget variance (excluding the values for bands 63 and 64) is 911, with a
minimum of zero and a maximum of 33249. The average sill variance of the first
structure is 128862.5, with a range of 682 to 589718, which is considerable. For the
second structure the average sill variance is 113863.8, with a minimum of 911 and a
maximum of 464529, which is slightly less than for the first structure. It is evident from
Figures 32 to 43 that the overall sill variance varies considerably, whereas the long-range
component is more consistent within the groups that can be identified visually from the
experimental variograms, Figures 20 to 30.

Bands 1 to 17 and 70 to 73 have a consistent long-range component of about 475 m,
which is close to that for PC1, 435.5 m. For bands 19, 74 to 94 the long-range
component is about 390 m, for bands 20 to 62 it is about 225 m, and for bands 65 to 69 it
is just over 500 m. For bands 96 to 101 and 115 to 125, and PCS5 it is about 700 m. For
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bands 102 to 115 it is about 600 m, and for bands 95 and 126, and PCc 2 and 3 it is about
900 m. It is evident that from this crude grouping based on the long-range component that
eight groups emerge, if the pure nugget variograms are considered as a group on their
own, Table 9. This is the same number of groups as for the classification of the raw data,
Table 9. It is interesting to note that there is an order in the values of the long-range
component with the order of the wavebands — sometimes decreasing and at others

increasing.

The forms of the variograms of the PCs appear to be similar to groups of variograms,
Figure 43. This relates more to the long-range component than to the short-range
component, , except for PC1. The relations between the PC models and groups of
wavebands is described above. Since the PCA was done a sample of the data (1 in 9
pixels) the values for the range have been multiplied by 21 to obtain the values in metres.

To classify the model parameters in the same way as that for the raw digital data the
parameters were standardized to zero mean and unit variance. This is because the
different scales on which the parameters have been measured would give too much
weight to the sill and nugget variances. The standardized model parameters were
classified in the way described above and the number of classes selected was based on
the group with largest change in the criterion. As far as I know the classification of the
model parameters of the wavebands is novel. Table 9 gives the results ofthe
classification for an optimal classification with eight classes.
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Figure 40: Experimental; variograms (symbols) and fitted models (lines) for bands 97 to 108
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Table 7. Model parameters fitted to the individual wavebands
Band: Lag Model Nugget Sill 1 Sill 2 Range 1 Range 2
Distance type variance variance variance [Tm Tm
1 630 m:Double (D) S 2,194 2,454 6,697 4.54 70.9
2 " D Spherical(S) 763 2,168 6,726 4.51 69.8
3 " DS 931 2,829 8,707 4.58 69.4
4 ! DS 1,235 3,756 11,422 4.64 69.3
5 " DS 1,526 4,688 14,183 4.63 69.4
6 " DS 1,672 5,109 15,407 4.43 69.7
7 " DS 1,776 5,513 15,023 3.91 69.0
8 " DS 2,059 5,973 14,718 3.81 68.1
9 " DS 2,133 6,197 14,881 3.83 67.7
10 ! DS 1,943 6,123 15,361 4.03 67.9
11 " DS 2,218 6,325 16,241 4.54 68.2
12 " DS 2,369 7,058 17,716 4.76 68.0
13 630 m DS 2,530 7,910 19,589 4.94 67.8
14 ! DS 2,837 8,751 20,991 5.31 68.0
15 N DS 3,274 10,420 24,326 5.48 68.1
16 " D Exponential 3,968 12,853 28,978 5.59 68.2
17 " DE 4,617 14,654 31,740 5.69 68.0
18 " DE 6,550 17,357 25,291 5.47 62.8
19 420 m DE 1,877 46,309 30,147 4.05 58.8
20 420 m DE 0 105,304 64,437 3.60 37.5
21 DE 0 163,557 117,817 3.69 37.1
22 DE 0 196,399 153,169 3.80 37.4
23 420 m DE 0 207,745 165,444 3.82 37.2
24 DE 0 219,071 175,665 3.85 36.9
25 DE 0 228,765 183,876 3.87 36.5
26 DE 0 237,056 192,098 3.92 36.2
27 DE 0 252,297 206,424 3.92 35.6
28 DE 0 256,250 211,930 4.01 35.5
29 DE 0 264,459 218,230 3.97 35.0
30 DE 0 260,462 215,512 4.00 34.7
31 DE 0 259,435 214,695 4.01 34.7
32 420 m DE 0 274,028 228,245 4.06 34.4
33 DE 0 259,864 213,750 3.96 33.4
34 DE 0 283,580 234,582 4.07 33.5
35 DE 0 258,307 211,490 4.04 32.7
36 DE 0 255,783 208,660 4.04 32.3
37 DE 0 267,707 218,144 4.04 32.0
38 DE 0 283,374 231,956 4.10 31.9
39 DE 0 299,100 246,504 4.14 31.8
40 DE 0 301,733 248,919 4.21 31.7
41 DE 0 316,027 259,568 4.08 31.4
42 420 m DE 0 325,911 268,242 4.12 31.3
43 DE 0 328,631 270,379 4.14 31.1
44 DE 0 338,345 278,064 4.13 30.8
45 DE 0 341,894 280,043 4.13 30.4
46 DE 0 334,013 273,185 4.21 30.1
47 420 m DE 0 286,330 230,088 4.11 29.1
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Band: Lag Model Nugget Sill 1 Sill 2 Range 1 Range 2
Distance Type variance variance variance Tm 7Tm
48 DE 0 262,810 208,206 4.19 28.7
49 420 m DE 0 250,368 196,616 4.10 28.3
50 DE 0 236,895 185,881 4.29 28.6
51 DE 0 234,075 184,197 4.32 28.5
52 DE 0 217,567 171,108 4.38 28.4
53 DE 0 213,340 167,915 4.36 28.0
54 DE 0 212,154 167,472 4.36 27.5
55 DE 0 220,978 175,298 4.38 27.2
56 DE 0 234,720 186,016 4.42 27.0
57 DE 0 252,250 199,785 4.37 26.6
58 420 m DE 0 284,362 224,839 4.39 26.5
59 DE 0 325,181 255,795 4.45 26.5
60 420 m DE 0 380,422 296,471 4.47 26.7
61 DE 0 446,103 345,732 4.52 27.4
62 DE 0 589,718 464,529 4.32 27.4
63 700m Nugget 1,426,939 0 0 0 0
64 700 m Nugget 206,244 0 0 0 0
65 700 m DE 33,249 25,198 20,448 5.17 77.9
66 DE 5,375 16,649 18,479 5.51 78.8
67 DE 1,607 24,643 28,465 5.46 78.6
68 DE 1,211 40,009 44,987 5.46 76.6
69 700 m DE 1,345 60,240 62,838 5.80 72.2
70 DE 1,158 73,645 73,244 5.81 69.9
71 DE 627 80,459 76,677 5.79 67.1
72 700 m DE 606 86,480 79,523 5.76 64.4
73 DE 383 92,558 82,770 5.71 62.0
74 DE 199 99,442 87,174 5.66 59.8
75 700 m DE 0 106,567 91,838 5.61 58.1
76 DE 61 115,822 98,271 5.57 56.6
77 DE 0 124,535 104,273 5.54 55.2
78 DE 230 132,558 109,660 5.50 53.9
79 DE 0 139,608 114,274 5.54 53.0
80 700 m DE 0 146,342 119,305 5.51 52.3
81 DE 0 151,397 123,717 5.54 52.2
82 DE 0 151,644 126,115 5.55 52.6
83 DE 0 147,987 124,776 5.57 53.2
84 DE 0 145,674 124,339 5.52 53.3
85 DE 0 138,991 120,982 5.62 54.8
86 DE 0 131,893 118,719 5.63 56.5
87 700m DE 0 124,839 115,278 5.66 57.6
88 DE 0 116,355 108,500 5.63 58.3
89 DE 0 108,452 101,444 5.69 58.7
90 DE 0 101,576 95,289 5.67 59.6
91 665 m DE 0 91,225 85,598 5.72 60.3
92 DE 0 74,737 69,993 5.67 60.7
93 665 m DE 1,515 55,033 51,927 5.73 61.9
94 DE 3,028 26,624 24,952 5.81 62.3
95 665 m DE 10,283 7,345 10,353 6.14 123.0
96 665 m DE 1,805 23,104 37,521 5.51 100.0
97 DE 345 34,529 51,617 5.79 97.2
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Band: Lag Model Nugget Sill 1 Sill 2 Range 1 Range 2
Distance Type variance variance variance Tm Tm
98 665 m DE 0 44,366 69,023 5.60 96.6
99 DE 1,058 48,591 71,392 5.83 93.0
100 DE 0 50,496 74,630 5.84 91.5
101 DE 0 49 527 76,319 5.81 90.6
102 DE 0 48,798 77,307 5.67 89.2
103 DE 0 48,948 79,529 5.69 88.6
104 DE 0 49,921 82,203 5.66 88.1
106 DE 0 50,054 83,666 5.72 87.6
106 DE 0 51,445 85,290 5.72 86.8
107 DE 0 53,025 85,464 5.79 85.9
108 DE 0 55,139 84,812 5.81 84.7
109 DE 0 55,707 81,411 5.80 83.3
110 DE 0 55,545 79,107 5.78 82.2
111 DE 0 51,118 72,298 5.77 82.7
112 DE 0 45,907 66,565 5.63 84.0
113 DE 0 39,890 61,411 5.58 85.9
114 DE 0 35,916 57,262 5.54 87.2
116 665 m DE 0 33,002 52,092 5.50 89.0
116 DE 0 30,091 46,979 5.37 90.8
117 DE 0 27,672 42,148 5.31 91.5
118 DE 0 24,094 38,685 5.11 93.1
119 DE 0 21,269 36,464 4.91 94.9
120 DE 0 18,749 33,032 4.82 95.5
121 665 m DE 0 15,730 28,708 4.59 96.8
122 DE 0 13,563 23,278 4.68 96.3
123 DE 0 10,568 18,439 4.55 98.9
124 665 m DE 429 6,564 12,208 4.23 101.4
125 DE 486 3,590 6,027 4.06 104.6
126 700 m DE 1,507 682 911 5.62 142.0
PC1 245 m DS 29.69 22.40 31.67 3.617 19.29
PC2 210 m DE 9.670 11.44 17.42 6.729 44.79
PC3 245 m DS 1.694 1.085 1.521 4.739 41.67
PC5 245 m DS 0.559 0.086 0.099 2.543 33.92
Table 8. Summary statistics of model parameters of hymap wavebands.
Parameter Mean Minimum Maximum
Nugget variance 911 0 33249
Sill of first structure 128862 682 589718
Sill of second structure 113864 911 464529
Range of first structure 4.9 3.6 6.1
(34.3m) (25.2 m) (42.7 m)
Range of second structure 60.4 26.5 142.0
(422.8 m) (185.5 m) (994.0 m)
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Mapping of hyperspectral wavebands

Pixel maps of the digital information for each band have been plotted in Figures 44-64.
The choice of map colour scale was based on the minimum, maximum and mean values
for each band. To enable as much comparison as possible the same scale was used for
groups of bands. The maps show clearly the range of spatial textures that become evident
for different bands, however without some additional expertise from TEC it is not clear
how to interpret the variety present. It is evident that some spectra pick out the detail in
the built up area in the north central part of the map whereas others, such as band 57
seem to pick out the physiography more. Many maps have similar features, but the
texture varies even for those with similar variograms. The maps of bands 63 to 65 and
band 126 are mainly noise. For bands 63 and 64 this was expected because of the pure
nugget variograms. Bands 65 and 126 have large nugget to sill variances of 42% and
49%, respectively which is expressed by the speckled appearance of their maps.

Factorial kriging of selected wavebands

Wavebands were selected on the basis of the long-range parameters of their variogram
models. Figures 65 to 73 show the maps of the long- and short-range components of the
variation. The short-range component was fairly consistent for the different wavebands
and this is evident in the maps based on this scale of variation. They resemble the texture
that was evident in the 1-m imagery for the site. Roads, tracks, buildings and the
woodland texture are evident. The maps of the long-range component differ because they
are based on different spatial scales. Bands 95 and 126 (Figures 72 and 73) have the
largest long-range component. However, the variation of these components appears to be
more ‘noisy’ than for the others and this was evident in the raw pixel maps. Bands 22, 47
and 58 (Figures 66, 67 and 68) have the shortest long-range components. The texture in
the valley (red) and spurs (green or yellow) can be seen. This probably reflects the
intricate physiography of the area. Bands 10, 66 and 83 (Figures 65, 69 and 70) have
intermediate long-range components. The texture associated with the small tributary
valleys is most clear in these maps.

Further discussion with personnel at TEC is needed to improve the interpretation of this
analysis as with the raw pixel maps.
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Figure 44. Pixel maps of wavebands 1 to 6 for the hymap image data.
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Figure 45. Pixel maps of wavebands 7 to 12 for the hymap image data
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Figure 46. Pixel maps of wavebands 13 to 18 for the hymap image data
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Figure 47. Pixel maps of wavebands 19 to 24 for the hymap image data
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Figure 48. Pixel maps of wavebands 25 to 30 for the hymap image data




1

Above 4000
3500 — 4000
3000 — 3500
2500 — 3000
2000 — 2500
1500 = 2000
1000 —~ 1500
Below 1000
200
150+
Above 4000
3500 — 4000
3000 — 3500
2500 — 3000
2000 - 2500
1500 = 2000
1000 - 1500
Below 1000
[ Above 4000
1 3500 — 4000
[ 1 3000 ~ 3500
[ 2500 - 3000
[1 2000 - 2500
[_] 1500 - 2000
1 1000 - 1500
Hl Beow 1000

Figure 49. Pixel maps of wavebands 25 to 36 for the hymap image data
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Figure 50. Pixel maps of wavebands 37 to 42 for the hymap image data
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Figure 51. Pixel maps of wavebands 43 to 48 for the hymap image data
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Figure 52. Pixel maps of wavebands 49 to 54 for the hymap image data
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Figure 53. Pixel maps of wavebands 55 to 60 for the hymap image data
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Figure 54. Pixel maps of wavebands 61 to 66 for the hymap image data
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Figure 55. Pixel maps of wavebands 67 to 72 for the hymap image data
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Figure 56. Pixel maps of wavebands 73 to 78 for the hymap image data
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Figure 57. Pixel maps of wavebands 79 to 84 for the hymap image data
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Figure 58. Pixel maps of wavebands 86 to 90 for the hymap image data
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Figure 59. Pixel maps of wavebands 91 to 96 for the hymap image data
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Figure 60. Pixel maps of wavebands 97 to 102 for the hymap image data
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Figure 61. Pixel maps of wavebands 103 to 108 for the hymap image data
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Figure 62. Pixel maps of wavebands 109 to 114 for the hymap image data
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Figure 64. Pixel maps of wavebands 115 t0120 for the hymap image data
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Figure 64. Pixel maps of wavebands 121 to 126 for the hymap image data
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Summary of classification results

Table 9 shows the groupings of the bands that emerge from both visual (V) and statistical
(S) appraisals. For the spectra shown in Figure18 it is the major changes that are noted in
the classification in Table 9. For the maps a grouping has not been attempted at present —
it is merely the changes in the texture that are noted in Table 9. The groupings identified
from the correlation matrix are also reflected in those for the first 5 Pcs and in the
experimental variograms.

Table 9. Suggested groupings of bands based on visual and analytical results.

Method Major changes in the spectra
Spectra (V) 13 18 35-37 50 60 63 70 93
PC1 PC2 PC3 PC4 PCS5
PCA 18-19 20-59 1-13 63-66 126
eigenvectors (S) | 61 —62 95
66 — 94
99 —122
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class 8
Classificationof | 1-18 70-93 20-21 27-39 40-46 22-26 61-62 63
raw data (S) 64-69 19 57-58 59-60 49-56
94 -126 47 48
Experimental 1-17 20-62 63-64 19,65 66-70 96-125
variogram form 71-94 95 18
V) 126
Variogram:long- | 1-17 19 20-62 63-64 65-69 96-101 102-115 95
range (S/V) 74 - 94 126
Classificationof | 1-13 14-18 63-64 27-28 61-62 20-27 65-68
model parameters | 19 69 - 94 58 - 60 49-57 95-119
(S) 120-125 126
Sequence of changes noted in maps
Maps (V) 1-17 18, 19, 21-38 39-46 47-57 58-62 63-65 66 - 69
20
70-74 75-8 90-92 93-94 95 96 -103 104 - 113 -
112 125
126
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Figure 65. Factorially kriged estimates for waveband 10:
a) short-range component and b) long-range component.
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Figure 66. Factorially kriged estimates for waveband 22:

a) short-range component and b) long-range component.
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Figure 67. Factorially kriged estimates for waveband 47:
a) short-range component and b) long-range component.
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Figure 68. Factorially kriged estimates for waveband 58:
a) short-range component and b) long-range component.
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Figure 69. Factorially kriged estimates for waveband 66.
a) short-range component and b) long-range component.
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Figure 70. Factorially kriged estimates for waveband 83:
a) short-range component and b) long-range component.
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Figure 71. Factorially kriged estimates for waveband 95:
a) short-range component and b) long-range component.
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Figure 72. Factorially kriged estimates for waveband 115:
a) short-range component and b) long-range component.
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Figure 73. Factorially kriged estimates for waveband 126:
a) short-range component and b) long-range component.
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PART III: A GEOSTATISTICAL AND WAVELET ANALYSIS OF THE
NATIONAL SOIL INVENTORY OF ENGLAND AND WALES

Introduction

Tt was decided while on a visit to TEC by Mr W. Clark that Mr E. Bosch and Dr M. A.
Oliver should extend the comparison of the geostatistical and wavelet analysis that they
had done on the Fort A. P. Hill SPOT image to a large data set of soil information. The
reason for this was to see how the techniques performed when the initial data are a
sample rather than complete cover as in the image. For the SPOT image we had full
cover of pixel information which we then sampled. Kriging and the low frequency
wavelet coefficients were used to restore the data that had been removed (see report ??
and Oliver et al., 2000). For the soil data we started with sample information and
resampled this for the analyses. The wavelet analysis of the soil data was done by Mr E.
Bosch during Dr Oliver’s visit to TEC in June 2000.

The National Soil Inventory of England and Wales

The soil data that we have analysed are part of the National Soil Inventory (NSI) of
England Wales, which was carried out by the Soil Survey of England and Wales between
1978 and 1983 (McGrath & Loveland, 1992). The aim of the survey was to provide a
record of the soil information in these countries and both toxicity and deficiency of some
elements of the soil that affect both grazing animals and arable crops at the national level.
For the NSI to be an unbiased estimate of the distribution of types of land and their
properties, strict protocols were applied to site location and description, soil sampling
strategy, and soil profile description. This was very unlike the practice of 'free' soil
survey which is commonly used to produce conventional soil maps (Avery, 1987).
Considerable effort also went into quality control of pre-treatment and analysis of the
samples, data recording, error trapping and construction of the database, because of the
number of samples and the magnitude of the subsequent analytical programme
(Loveland, 1990; McGrath & Loveland, 1992).

The number of samples was restricted to those falling at the intersections of a 5-km
orthogonal grid. The sampling grid was offset 1 km north and east of the origin of the
Ordnance Survey National Grid. If the sampling point fell on anything other than land,
e.g. on a road, building, water-body etc., then the sampling point was moved 100 m north
of the grid node. If that failed to locate suitable soil, then the point was moved 100 m
west from the originally intended point. This process was repeated in steps of 100 m and
200 m from the grid node, in the order north, east, south and west. If no suitable soil was
found after this procedure, then the site was abandoned for sampling purposes, although
the land-use at the original sampling point was recorded so that the inventory was
complete and to make clear the reason for the deviation. If a new sampling point was
found, then the standard procedure for description and sampling was followed at that
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point (see below). In this way, an unbiased record of the occurrence of various forms of
land-use was maintained.

The principal interest was in agricultural land. No attempt was made to devise a sampling
strategy to cover urban areas adequately. In total 5691 sites were sampled. The grid-
reference located the site to within 10m on the ground, i.e. to an accuracy which would
place any return visit within the original soil sampling sub-grid (see below).

Sampling

The soil profile was described in a pit dug to 80 cm (or less if rock was encountered) at
each sampling point, using standard terminology (Hodgson, 1974). However, sampling
was restricted to the uppermost 15 cm of mineral soil (or less if rock intervened), or of
peat, as appropriate, ie. litter layers were not sampled, as they were regarded as
ephemeral. The actual sampling depth was recorded. Twenty-five cores of soil were taken
at the nodes of a 4m grid within a 20 m x 20 m square centred on the Ordnance Survey
(OS) 5-km grid-point. The cores were taken with a screw-type, mild-steel auger, to avoid
contamination from traces of elements such as chromium and manganese present in
stainless, plated or similar special steels. The cores of soil were bulked and mixed well in
the field and double-bagged. in food-grade polythene bags, and a waterproof and rot-

proof label ('Synteape') placed between the bags.
Samples were air-dried and milled in a mild-steel roller-mill (Waters & Sweetman, 1955)

to pass a 2-mm aperture sieve. Preliminary work had shown that no detectable
contamination of the samples arose from this procedure. The resulting data set comprises
up to 127 analytical and descriptive parameters for each of 5691 points across England
and Wales (Loveland, 1990; McGrath & Loveland, 1992). This collection of data is a
unique and invaluable resource,

In this analysis we have examined only pH and total Zinc because they represent other
variables well. From a principal components analysis (PCA) Zn was seen to load heavily
on the first component and pH on the third axis, which reflected the effects of pareent
material (PM) and leaching. The pH was measured by a combination electrode and pH
meter in a 1:2.5 soil-water suspension (MAFF, 1986) on soil <2-mm. Zinc was
determined using the <150 micrometre soil. It was extracted by aqua regza and
determined by ICP-AES (RES) (McGrath & Cunliffe, 1985).

Analysis

Figures 74a and 75a show the full set of pixel information on the 5-km grid for pH and
Zn. (They have a different colour scale from the remaining maps because they were
prepared on a different computer for the Ministry of Agriculture analysis. Nevertheless
the variation can be compared and the relative area that we have worked on). The
analysis for this project was carried out on a subset of the full NSI data. This was because
the wavelet analysis requires a set of data that is square and can be sampled in octaves.
The outline of the data for England and Wales is irregular and we selected data from the
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central part of the country to obtain as large a square as possible that would suit the needs
of the analysis. This resulted in a data set with 3500 sites. For the wavelet analysis the
data were ‘padded’ with zeros so that there were no gaps. The latter arose because of the
shape of the coastline and the urban areas within the country that were not sampled (see
Figures 74a and 75a); they appear as white patches. Figures 74b and 75b show the data
that were extracted for the analysis in this report.
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Table 10 gives the summary statistics of the subset of the data. Zinc was strongly
positively skewed which can be seen from Table 10 and Figure 76a, therefore it was
transformed to common logarithms (logo), Figure 76b. This transformation has produced
a log-normal distribution which is common for many elements, Figure 76b and Table 10.
The histogram for pH shows that this has a close to normal distribution, Table 10. A near-
normal distribution is necessary for the variogram analysis because it is based in
variances, which are unstable if the data do not have a near normal distribution.

a) Zinc b) LogioZn ¢) pH
0 Zinc ol
2 20 2000-
>\1500- >\’5°°‘ 1500
&) (24 >
5 g 1000 g
= 1000 3 1 D
g‘ g{ 3_1000-
L [res L;S_
500 500 o0
04 0
0 40 80 120 160 200 240 280 00 05 1.0 15 20 25 30 0-

Zinc log Zn

Figure 76. Histograms from the subset of the NSI data for Zinc and pH.

The data on the 5-km grid were further subsampled to compare the results of data
reconstruction by both kriging and wavelet analysis. The subsampling produced grids of
10-km (1 site in every block of 4 sites resulting in 869 sites), 20-km (1site in every block
of 16 sites resulting in 219 sites), and 40-km (1 site in every block of 64 sites resulting in
57 sites).
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Table 10. Summary statistics for pH and Zinc for the subset of data used in the analysis.

Statistic pH Zinc LogioZn
Minimum 3.200 6.00 0.7782
Maximum 9.100 3648.0 3.562

Mean 6.094 103.95 1.934

Variance 1.627 14273.2 0.0595
Standard deviation 1.275 119.47 0.2440
Skewness -0.2377 14.03 -0.0002
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GEOSTATISTICAL ANALYSIS

Variogram analysis

The spatial structure in the data was determined by computing the experimental
variograms of pH and log;oZn. For the full set of data Zn and pH showed no marked
evidence of anisotropy, therefore omnidirectional variograms only were computed. For
both the full data and the subset the experimental variogram of pH showed evidence of
trend. The semivariances continued to increase after an initial sill had been reached
(Figure 77a). This suggests the presence of smooth continuous variation that violates the
assumptions of geostatistics, which assumes that the variable is random. Therefore, we
modelled the trend by linear and quadratic functions of the co-ordinates so that the
analysis could be done on the residuals from the trend. The linear function was less
effective in accounting for the trend than the quadratic one: the latter removed over 30%
of the trend in both cases. The variogram was then computed afresh on the residuals, and
this now shows a more simple bounded form, Figure 77b.

Most of the variograms were fitted by nested functions. The models fitted to the data
included single exponential, spherical, and power functions including linear, double
exponential and spherical, and exponential with linear functions. For logioZn (Figure
77¢) and pH of the residuals double spherical models provided the best fit. The equations
for the models are given below.

Double exponential

y(h) =c, +c,{1—exp(=h/r)}+c,{1—exp(-h/r,)}
where c; and r; are the sill and distance parameter of the first structure, and c; and r, are
the sill and distance parameter of the second structure.

Double spherical
sh 1(hY 3h 1( kY
y(W=co+ey——=|—| ¢ty 2| — forh<a,
2a, 2\ aq 2a, 2\a,
3h 1( kY
7(h)=c0+62{—272—5(zj } fora,<h<a,
y(h)=c +c, forh>a,

where ¢; and a are the sill and distance parameter of the first structure, and ¢, and a; are
the sill and distance parameter of the second structure.
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Figure 77. Experimental variograms (symbols) and fitted models (lines): a) raw values of
pH, b) pH residuals, and c) log;oZn.

These results show that there are two main scales of spatial variation: a short-range
component of about 18 km for log;oZn and 37 km for pH (residuals), and a long-range
component of 61 km for log;oZn and 118 km for pH (residuals). The average short-range
component for the full data for the range of properties examined was 24 km, and the
average of the long-range component was 89 km. There are slight differences in the
ranges for these subsets, but they are within similar orders of magnitude. A characteristic
of the variograms of the subset and of the full data is their large nugget variance (co): it is
more than 60% of the sill variance for most variables. Most of the nugget variance can be
accounted for by variation over distances less than the sampling interval of the grid. This
shows that the 5-km grid interval misses a considerable proportion of the variation in the
soil.
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Figure 74 shows the pixel map of pH. There are two spatial scales of variation evident in
the map. Areas with a pH of less than 6 are in the western part of the country in the main,
which is also where the main uplands are, and where agriculture is dominated by
grassland systems - optimum pH between 5 and 6.. These are also the wettest parts of
England and Wales. Much of central and eastern England has pH values of 7 and above,
partly reflecting geology and the distribution of calcareous soils, but also the widespread
use of lime on arable soils (optimum pH c. 6.5 - 7.5). There are areas of lower pH in the S
associated with the Tertiary sands and gravels. The E-W differences in pH values reflect
the pattern of rainfall as well as elevation and land-use. Figure 75 shows the original
values as a pixel map for total Zn. There are many areas with large concentrations, and
the most extensive of these follows the Jurassic clay band from SW to NE across the
country. There are other areas trending N to S from the Midlands of England to
Tynemouth (not on the subset map). These seem to be associated with the Carboniferous
shales and sandstones, as do the areas of large concentrations in central Wales.

Kriging

Ordinary kriging and factorial kriging (kriging analysis) have been described in earlier
reports (Contract Nos. N68171-97-C-9029; N68171-98-M-5311). Ordinary kriging was
used to reconstruct the data after subsampling them to produce smaller data sets. Punctual
kriging was used so that the estimates and maps could be compared with predictions from
subsets of the data. The estimation grid was chosen to coincide with the 5-km sampling
grid. Estimates were made at the nodes of this grid so that we could compare the kriged
estimates at the sampling points with the original values where these had been removed.
At the places where there were data punctual kriging returns the sample value there. The
original variograms were used for the analysis because it is unlikely that their structure
would change over time. In addition those from the subsets have large nugget variances
and they are less reliable because there are few comparisons for each semivariance,
especially for the 40-km grid.

For pH ordinary kriging was done on the residuals and the quadratic trend added back to
the estimated residuals afterwards.

The ordinary kriged logarithmically transformed predictions for Zinc were back-
transformed for mapping so that the variation could be seen on the original scale in which
the variable had been measured. This is not straightforward because the kriging variance
must be taken into account. The equation for back-transformation is:

Z = exp{¥(x,)xIn10 +0.502(x,) x (In10)*}

where y(x,) isthe estimated value of log;oZn at X and ¢?y is the estimation variance.

Factorial kriging was done on the full set of data to examine the different scales of
variation in the data and to compare the results with those of the multi-resolution wavelet
analysis. The aim is to filter out the different scales of variation, so that the independent
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components of the spatial structure can be examined as an aid to further interpretation.
Factorial kriging estimates the long- and short-range components separately. The
variation is nested for both pH and Zn; the variograms have two spatial structures. The
pixel maps of the raw data, Figures 74 and 75 suggest that there are two scales of
variation, and this is confirmed by the variogram results. The variation at the longer scale
appears to be related to the geology for Zn and pH and also rainfall and elevation for the
latter. Zinc is a good example of many of the other variables for this analysis. For the

long-range

WAVELET ANALYSIS

The method for this analysis was described in a previous report (N68171-98-M-531 1) and
also in Oliver ef al. (2000) for SPOT image data. This is the first analysis that we are
aware of using soil data in two dimensions. There are few data sets in the world for soil
that are on a grid and would provide adequate data for this analysis. Wavelets enable
data reconstruction and multi-resolution analysis by deriving the low frequency and high
frequency coefficients from the data. The low frequency wavelet transform has been used
to restore the data from the subsamples on the original 5-km grid and to identify the long-
range spatial component at the coarser resolutions. The average of the high frequency
wavelet transforms has been used to identify the short-range component. The advantage
of wavelet analysis at the outset for the pH data is that there is no need to take account of
trend. An important advantage of this analysis is that it is unaffected by non-stationarity.

RESULTS FOR pH

The following series of maps (Figures 78 to 80) shows the reconstructed values of pH
from ordinary kriging and the low frequency wavelet coefficients for the three sampling
grids. One noticeable difference between the maps is that the kriged maps appear more
‘spotty’. This is because kriging returns the sample value at the data point, whereas the
wavelet analysis is a predicted value at the data points as well as at other points. Another
difference arises from the fact that the data were padded for the wavelet analysis with
zeros — these are the larger blue areas beyond the coastline and also the urban areas where
there were no sampling locations. Figure 78b for the data on a 10-km grid there is slightly
more of the original detail in the variation evident, whereas the kriged map (Figure 78a)
shows the effect of smoothing from kriging.

For Figure 79a and b the effects of the greatly reduced number of sampling sites is
evident in the loss of detail. For Figure 79a the margin around the map is because there
were no data there to krige from. Kriging, Figure 79a, has smoothed the variation more
than wavelet analysis, Figure 79b, and the spotty appearance of the former map is the
effect of punctual kriging. Figure 80a and b shows the kriged and low frequency wavelet
coefficients for the 40-km grid. It is clear that much detail has been lost and that there is
more difference between these two maps than between those in Figures 78 and 79.
Visually the wavelet analysis appears to have performed better at this level of sampling
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which is what we found for the image data (Oliver et al., 2000). The more sparse the
sampling the better the wavelet analysis appears to perform in comparison with kriging.
Figures 81 to 83 show the maps of the comparisons between the predictions from
ordinary punctual kriging and the low frequency wavelet transform, and the original
values at the sampling sites of the 5-km grid. Figure 81a and b show the comparisons,
i.e. the absolute differences, for predictions based on the 10-km sampling grid. Figure
81a for the kriged comparisons is a more spotty map than the one from the wavelet
analysis: the sampling points are evident as the blue pixels where there is no error. For
the wavelet analysis for this sampling grid there are fewer zero or small errors than for
kriging, This is confirmed by the histograms of the differences, Figure 84a and b.
Kriging also appears to perform better for predicting the values from the 20-km grid than
the wavelet analysis in terms of the small errors, Figure 82a and b. The histogram of the
kriged differences, Figure 84c, is somewhat misleading because there are fewer
comparisons for kriging than for the wavelet analysis, and it is likely that there would be
more of the larger errors than is evident in the histogram. The slight negative skewness in
this histogram suggests that there is some bias in the predictions. The histograms, Figure
84c and d, for this sampling grid (20-km) are more similar than for the 10-km one. The
comparisons for the predictions from the 40-km grid suggest that the wavelet analysis has
performed slightly better at this level of sampling, which was the case for the SPOT
image data (Oliver et al., 2000). These histograms, Figure 84d and e show that the
wavelet analysis has more smaller errors. There are fewer comparisons for kriging
because the method requires a minimum of 4 points within the search radius and this fails
at the margins of the error when the sampling points become sparse.

Summary

These results are interesting when compared with the analysis of the SPOT data. The NSI
data appear not contain locally non-stationary data for pH. These would occur where
there are marked boundaries in the soil, for example. At the sampling interval used here
of 5-km local non-stationarity is less likely than for more intensively sampled data and
remotely sensed data. Therefore, the errors for kriging are less than they were for the
analysis of the SPOT data where there were marked changes at lakes and other
boundaries causing local non-stationarity. Since kriging is an exact interpolator and
wavelet analysis is not, there remains the need to combine the methods. It seems that
some progress on this has been made at the Centre de Géostatististique, Fontainebleau.
However, at the moment it is difficult to ascertain the extent of this and we shall
endeavour to take this forward.

Another point of interest from this analysis is that the pH data form the NSI survey
contain long distance trend. This means that part of the variation depends on the spatial
coordinates. This violates the assumptions of geostatistics in the same way as local trend
or drift, i.e. local non-stationarity. This affected the variogram, as was evident above,
Figure 77a and b, and meant that we had to remove the trend and do the analysis on the
residuals, and add back the trend after kriging. This is clearly a considerable amount of
additional effort over and above the straightforward analysis. It is evident from the results
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of the wavelet analysis that the prediction are unaffected by the trend. Therefore, if there
is a choice of method available — situations with known trend present would benefit from
the wavelet analysis.
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estimates and b) low frequency wavelet transform
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Figure 80. Predictions of pH at a 5-km interval from data on a 40-km grid: a) kriged
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Figure 81. Comparisons between estimates for pH from data on a 10-km grid: a) kriging

and b) wavelet analysis.
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Figure 82. Comparisons between estimates of pH from data on a 20-km grid: a) kriging
and b) wavelet analysis.
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Figure 84. Histograms of the differences for pH from kriging and wavelet analysis.
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Results of factorial kriging and wavelet analysis for pH

Factorial kriging was applied to the data on the 5-km grid, but the equivalent analysis for
wavelets was done on all of the subsamples.. The reasons for this were given in the
previous final report. Figure 85 shows the long-range component from kriging analysis.
The results for all of England and Wales are given at the end of the report, Figure 98.
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Figure 85. Long-range estimates of pH from kriging analysis.

The map of the long-range estimates for pH is similar to the kriged estimates from the
20-km grid, they are not as similar to any of the low frequency wavelet predictions,
Figures 78 to 89. The long-range variation, Figure 85 shows that the larger values are
generally associated with the lowland areas and the limestone uplands. However, the
western coastal areas have large values of pH which are most probably associated with
the deposition of sodium ions by rain in these areas.

Figures 86b and 87 a and b show the high frequency wavelet component for pH from the
wavelet analysis. It is evident that the result for the 20-km grid is the closest. This reflects
the same resolution for extracting the long-range component also. There are some
similarities in the detail of the distributions, but there are also differences. In the future
we shall examine the differences between these particular results to assess their relative
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performances in more detail. The high frequency component for the 40-km grid has not
identified the relevant short-range component.

Again an interesting point emerges that we observed in the previous analysis of the SPOT
data. The level of resolution at which the wavelet analysis has identified the long- and
short-range components of the variation is related to the short-range parameter of the
variogram. We can now suggest more forcibly that for a multiresolution analysis using
wavelets the best approach is to compute the variogram first.
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Figure 86. Short-range variation of pH: a) from kriging analysis based on the 5-km grid,

and b) the high frequency wavelet coefficient from data on the 10-km grid.
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RESULTS FOR ZINC

Figure 75a and b show the original values for total logjoZn. There are many areas with
Jarge concentrations, and the most extensive of these follows the Jurassic clay band from
SW to NE approximately. There are other areas trending N to S from the Midlands of
England to the north. These seem to be associated with the Carboniferous shales and
sandstones, as do the areas in central Wales. The large values around Avonmouth (SW)
are associated with the smelting industry there.

For Zn the common logarithms were analysed and the values back-transformed for
mapping as described above. Figure 88a and b shows the maps of the predictions using
ordinary punctual kriging and the low frequency wavelet coefficients for data on the 10-
km grid. The results are similar. The spotty appearance of the kriged map arises from the
fact that kriging restores the data at the sampling points with non error. The overall result
shows that kriging smooths more than the wavelet analysis. Nevertheless the maps are
similar to those for the original data, Figure 75b.

The pattern of variation in the estimates from the 20-km grid for both analyses is also
preserved well, Figure 89a and b. The degradation in detail is clear, but the large-scale
pattern is still evident. Again the results for both methods of analysis are similar — more
so than for pH.

Figure 90a and b shows the results for the 40-km grid. The results from the wavelet
analysis, although showing a loss of detail, still show a similar pattern of variation,
Figure 90b, to that of Figure 89b. The kriged results so not show such a good
resemblance to the original pattern of variation. Note particularly the loss of accuracy in
the north western part of the country.

These results again accord with the findings for pH and for the analysis of the SPOT
image. When the number of samples is few and the distance between them large kriging
restores the data less well than the wavelet analysis. This effect is supported by the maps
of the differences, Figures 91 to 93 and of the histograms, Figure 94.

Figures 91 to 93 show the maps of the absolute differences between the predictions from
ordinary punctual kriging and the low frequency wavelet transform, and the original
values at the sampling sites of the 5-km grid. Figure 91a and b shows the comparisons,
for predictions based on the 10-km sampling grid. Figure 91a for the kriged comparisons
is a more spotty map than the one from the wavelet analysis: the sampling points are
evident as the blue pixels where there is no error. For the wavelet analysis for this
sampling grid there are fewer zero or small errors than for kriging, This is confirmed by
the histograms of the differences, Figure 94a and b. The same negative skew in the errors
is evident for Zn as for pH. Kriging does not appear to have performed quite as well for
Zn for the 20-km grid as the wavelet analysis in terms of the small errors, Figure 94c and
d. The maps of the differences, Figure 92a and b do not show this as clearly. Both
methods appear to have performed similarly from these two maps. The slight negative
skewness in this histogram again suggests that there is some bias in the predictions. The
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comparisons for the predictions from the 40-km grid suggest that there is less difference
between the wavelet analysis and kriging than the maps of the estimates suggested there
would be, Figure 93. The histograms, Figure 94d and e confirm this, although direct
comparison is not possible because kriging has not gone to the edges of the area for the
reasons given before.

Summary
These results are interesting when compared with the analysis of the SPOT data. The NSI

data for zinc again do not appear not contain locally non-stationary data as for pH. This
explains the somewhat better performance of kriging for the 10-km grid.

The zinc values were skewed and this means that the variances when computing the
variogram are unstable. The values were transformed to common logarithms, logoZn,
and kriging was performed on the logarithms and these values were back-transformed
afterwards so that the values could be shown on their original measurement scale as for
the wavelet analysis. Again this is clearly involves additional effort over and above the
wavelet analysis, which does not require non-normal distributions to be transformed. This
has an additional advantage because the transformation causes additional smoothing of
the predictions. This does not seem to be particularly evident from the results given here.
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Figure 88. Predictions of Zn at a 5-km interval from data on a 10-km grid: a) kriged
estimates, and b) low frequency wavelet coefficients.
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Figure 89. Predictions of Zn at a 5-km interval from data on a 20-km grid: a) kriged

estimates, and b) low frequency wavelet coefficients.
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b)

Figure 90. Predictions of Zn at a 5-km interval from data on a 40-km grid:
estimates, and b) low frequency wavelet coefficients.
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Figure 91. Comparisons between estimates of Zn from data on a 10-km grid : a) for

kriging, and b) for wavelet analysis.
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Figure 93. Comparisons between estimates for Zn from data on a 40-km grid: a) for
kriging, and b) for wavelet analysis.
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Results of factorial kriging and wavelet analysis for Zinc

Factorial kriging was applied to the data on the 5-km grid, but the equivalent analysis for
wavelets was done on all of the subsamples.. The reasons for this were given in the
previous final report. Figure 95 shows the long-range component from kriging analysis
on the logarithmic scale. These results were not back-transformed because of the way in
which these estimates are derived. The long-range kriged estimates for logio Zn show that
the largest values occur near to the Avonmouth smelter in the west of England, and
another area in Derbyshire. There are large values associated with the Jurassic clays
trending from SW to NE, to the Carboniferous limestone in Derbyshire, Carboniferous
shales in the NE and Ordovician rocks in Wales. This distribution has some similarities
with that for Cr. The values for logjo Zn for all of England Wales are shown in the end.
These results show the closest relations with the 20-km grid wavelet analysis, Figure 90b,
even though the colour scales appear somewhat different because Figure 95 is for

logarithms.
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Figure 95. Long-range component from factorial kriging for Zinc.
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Figure 96. Short-range spatial component of Zinc: a) from factorial kriging on the 5-km
grid, and b) high frequency wavelet coefficient for data on the 10-km grid
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Figure 97. Short-range variation of Zn: a) — high frequency wavelet coefficient for data
on the 20-km grid, and b) high frequency wavelet coefficient from data on the 40-km
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a B

124

Figure 96a shows the short-range component of the variation from kriging analysis, and
the maps for the whole of England and Wales for this analysis are given at the end of the
report, Figure 99. The short-range component was investigated previously, it has a strong
similarity with the map of the short-range component for Cr (not shown). These
distributions also show a relation with the small scale drainage basins and local changes

in rock and soil types.

Figures 96b and 97 a and b show the high frequency wavelet component for Zn from the
wavelet analysis. It is evident that the result for the 20-km grid is the closest to that for
the short-range component from kriging analysis. This reflects the same resolution for
extracting the long-range component also. There are some similarities in the detail of the
distributions, but there are also differences. In the future we shall examine the differences
between these particular results to assess their relative performances in more detail. The
high frequency component for the 40-km grid has also identified some of the relevant
short-range component.

Again an interesting point emerges that we observe above is that the level of resolution at
which the wavelet analysis has identified the long- and short-range components of the
variation is related to the short-range parameter of the variogram.
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Figure 98. pH — results of factorial kriging: short- and long-range components.
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PARTIV: AIDE MEMOIRE — SPATIAL SAMPLING

Introduction

The land surface, the materials of which it is composed and the environment more generally are
continuous. In general measurements or observations can be made on only small portions of them,
i.e. on samples, because of the large areas involved. For example, in a single agricultural field there
is an infinite number of potential sampling points. Samples intended to represent the areas from
which they are drawn must be planned with care. The information from a sample location should
represent a surrounding area, the extent of which we might not know. Since many environmental
properties vary locally in a complex and erratic way the values from a single sampling point
include a sampling effect. To increase the information from a sampling location so that it is
representative a bulked sample can be taken, and provided that the property is additive the
measurement made on it will equal the regional mean apart from sampling error.

At the outset consider the use that will be made of the sample information. For instance, will the
mean values of the properties observed for the entire area or for strata within the area be used to
predict at unsampled places? Or will the information be used to predict locally, either using
mathematical interpolators or geostatistical ones. For either of the latter the sample data must be
spatially autocorrelated for them to have any merit.

This aide lists the matters that must be considered and resolved in planning sampling of a
geographic region, which for present purposes we treat as two-dimensional.

Defining the target

The domain

The domain is the region of interest. Circumscribe it by a boundary on a map so that every point
can be assigned to the domain or not with certainty. The domain may comprise a single parcel of
land or several. Denote it by D.

Support

The support is the area or volume of material on which you make measurements. It has size and
shape, and may have orientation. In remote sensing it is the “footprint' of the pixel; in vegetation
surveys it is the quadrat; in soil survey it is the core of soil taken from the ground. Cores of soil
may be taken from areas larger than the cross-section of the cores and bulked for analysis in the

laboratory. In these cases the supports are the larger areas.

In any one survey define the support and keep it constant throughout.
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The population and units

Within D are units that have the dimensions of the supports. In a remote image their number is
finite though large. In soil survey they are so many that they may be regarded as infinite. Define
them by their spatial coordinates and their spatial extents. Together they comprise the population.
The terms ‘population’ and “units’ may be used to refer to the values ofa variable of the supports.

The target

Within D there may be only certain kinds of terrain or land use that are of interest, e.g. only dry
land (not water), only farm land (not towns, not parks, not golf-courses, etc.). The units falling in
these classes constitute the target population. The others do not belong.

Samples

Whole populations cannot be measured in ground survey; you can measure only subsets of the units
that comprise them. Such a subset of units is a sample.

Typically you will want two characteristics in a sample — accuracy and reliability. The first means
that a sample represents the population without bias, i.e. any value that we obtain from a sample
will be as likely to exceed the true value of the population as it will be to fall short. The second
implies that repeated sampling will give sensibly the same result. It is measured by the estimation
variance or standard error of the mean, s.e.

These characteristics can be assured by the sampling design in which there is sufficient
randomness.

Notation

We adopt the following basic notation.
D denotes the domain.

|D] is the area of D.

z is the variable of interest.

Z is a random variable.

Z(x) is a random process, random field, stochastic process, in which Z may take any one of two or
more values at random at each point X in D.

N is the size of the sample in D, i.e. the number of units in it.

Dy denotes the kth subdivision of D, of which there may be X.
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ni is the number of units in a sample of Dy.

4 denotes the mean of z in D.

Z is the mean of the N data drawn from D.
o* is the variance of z in D.

s*= &7 is the estimate of o” from the N data.
§*(D) is the estimation variance of x in D.

s(D) is the standard error of .

h denotes the lag separating two places, and is a vector in two dimensions; |h| is the distance
component of the lag.

»(h) signifies the semivariance at lag h.

Ai are the kriging weights.

Sampling designs for design-based estimation
This is essentially the classical statistical approach to sample design and prediction.

Simple random sampling

In simple random sampling N units are chosen with equal probability from the target population.
The result is unbiased, and the estimation variance s*(D) is given by s*/IN.

If there is any spatial correlation at the working scale then this is inefficient in the sense that the
same estimation variance could be achieved with a smaller sample by a better design.

Stratified random sampling

Divide the region into strata, Dy, &=1,2, . ., K, and represent each by a few units, ideally two,
chosen at random independently. The sizes n; may be chosen in proportion to the areas of the Dy,
|Dyl, if they are not equal.

If other sizes are chosen then the mean in D may be calculated as the weighted average of the
individual stratum means with weights proportional to the |Dy|. The estimation variance of stratified
sampling depends on the variance within the strata, or the pooled within stratum variance. In the
presence of spatial dependence the latter is less than the total variance in the population, and so
stratified sampling is more efficient than simple random sampling.

The estimation variance is given by
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K
s’ (D) graifiea = szsz (D),
=1

where s*(Dy) is the estimation variance within stratum Dy, and wy is the weight assigned to the
stratum. The weights should sum to 1 to avoid bias.

There are numerous ways in which this general scheme can be elaborated according to what you
know of the region and the variation within it. For example the strata could have unequal spatial
extents as in classification. In this case the different areas are taken into account through the weight
wy, such that

area of stratumk

W, =

total area

Systematic sampling

Sampling is usually most efficient when done on a regular grid. It has two disadvantages:

(1) it provides no ready estimate of the variance;

(2) it may lead to biased estimates of the mean.

The first arises because once the origin and orientation of the grid are decided there is no further
randomization possible. It is not easily overcome, but the estimation variance may be approximated
by methods such as Yates's balanced differences.

The second, bias, can happen where there is trend or periodicity in z in the region. Periodicity is
usually evident, and if it is then you can choose an interval and orientation that will be out of tune
with it. Alternatively, choose a non-aligned scheme in which each sampling point on the grid is
offset from its node by a random distance along its row and down its column according to a rule.
Sample size

The size of sample N may depend on the budget or the tolerance, i.e. error that can be tolerated in
the estimate from the survey. If the budget is fixed then choose a stratified scheme to minimize
the error for that budget.

If the error is specified as s(D) then for simple random sampling

N =5*/s*(D),

The formula for stratified sampling is more elaborate.
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You usually do not know §* in advance, and so choosing N is problematic. Therefore sample in
stages, starting with a sparse design that can be intensified as necessary. At each stage calculate the
estimation variance to see whether it meets the tolerance. If it does then stop; otherwise intensify
the sampling and recompute the estimation variance as the next stage.

Geostatistical (model-based) sampling design and prediction

Geostatistics is used to estimate local values rather than regional ones, i.e. to predict. It is based on
the assumption that z in the real world is a realization of the random process Z(x). For this reason
there is no need to randomize the sampling, and grid sampling is preferred because of its efficiency.

Geostatistical prediction (kriging) requires a model of the correlation structure, expressed either as
a covariance function, or rather more generally as a variogram. Like the variance in design-based
estimation, these functions are not known a priori and must be estimated from sample data.

Sampling must therefore serve two purposes:
(1) estimation and modelling of the variogram, and
(2) local prediction once the variogram has been estimated and modelled.

To satisfy item (1) sampling must be sufficient to estimate the semivariances precisely. It must also
be dense enough to estimate the spatial characteristics of the variation, such as correlation range

and general form of the variogram.

Sampling for item (2) will depend either on the budget or on the tolerable error of local predictions
and the variogram. '

Sampling to estimate the variogram

Nested sampling and analysis

Start with nested sampling and a hierarchical analysis of variance of the sample data if you know
nothing of variation in the region. Choose five or six sampling intervals in geometric progression
from the smallest lag distance of interest to the largest. Choose the angular separations at random.
Replicate at the longer distances to give sufficient degrees of freedom in the analysis of variance to
estimate the components. Expect to have a total sample, N, of about 100. Figure 1 shows the kind

of sampling plan to aim for.

Accumulate the components of variance to estimate y(|h|) at the distances of the design and draw a
crude variogram with the logarithm of |h| on the abscissa as in Figure 2.
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Figure 100. The plan of sampling for one main centre in a nested survey with 7 stages. The stages
in the hierarchy are given for each sampling site.
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Figure 101. The accumulated components of variance from a hierarchical analysis of variance
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giving a first approximation to the variogram.
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Such a result this can be used to identify the range of distance within which most variance occurs
and to plan further sampling to estimate the conventional variogram.

If all the variance appears to occur within the smallest distance of interest then local prediction is
not feasible. So stop! Figure 3 shows an example of a pure nugget reconnaissance variogram. All
of the variation is occurring within the shortest sampling interval.

®
i
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Distonce/m (log)

Figure 3. A pure nugget reconnaissance variogram from a nested survey.

Estimating the variogram parameters

Use the result from the hierarchical analysis above or other knowledge of the variationin D to
estimate semivariances, (h), at several lags, h, within the correlation range. Design a scheme with
approximately 100 to 150 sampling points if the variation appears isotropic. If a square grid with
this number gives you sufficient estimates of y(h) within the correlation range then use it. If not
then cluster the sampling in some way. Intensify sampling around a subset of grid nodes, bearing in
mind that you are likely to want a grid for kriging later. Alternatively, sample in clusters with a
range of sampling distances between locations, and spread the clusters evenly over D so that the

Do not cluster sampling in parts of D that you know or suspect to have unusually large values of z
(as you might in mineral surveys or pollution studies) or unusually small ones (as in studies of
deficiency diseases). This will result in bias.

Compute the sample variogram and plot the result. If the estimated values fall close to a smooth
curve then choose an authorized model to describe it, estimate its parameters, and proceed to

kriging.
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If there is too much scatter to identify a plausible function then increase the sampling, either by

intensifying the grid or by adding clusters, and recompute the variogram. Repeat until a smooth
form is identifiable.

If the variation is anisotropic and you wish to model the anisotropy then you must expect to sample
at 200 points or more.

Kriging

In kriging Z at an unknown point X minimize the prediction variance

02 () =2 A7(% - )= 33 A4 7K, - x)), 0

i=l j=1

where n << N is the number of sampling points near to the target point Xo. The quantities
7(x; —=x;) and y(x, —X ) depend on the separationsx; — x ,; and X, —x ; the larger these are the
larger is 0®(x).

The maximum value of ¢%(x,) is minimized by sampling on a regular grid. A triangular grid is
usually the most efficient, but rectangular grids are almost as good (Figure 3a), and as they are
easier to lay out and document they are preferred. If variation is isotropic then use a square grid.

If the budget is fixed then sample as intensely as it permits. If a maximum tolerance is specified,
say Skmax, then solve the kriging system for a range of sampling intensities (grid intervals) and plot
the kriging variance (or its square root, the kriging error) on the ordinate against the grid interval on
the abscissa. Connect the points by a smooth line, Figure 3. From s’kmax, OF Skmax, draw a horizontal
line until it meets the curve, and from that intersection drop a perpendicular. The value at which the
perpendicular cuts the abscissa is the required sampling interval, Figure 3b.

Determine the number of cores in bulked samples similarly. Compute the estimation variances
using Equation (1) for equispaced sampling configurations and sample sizes from 4 to about 50 and
join the values to form a curve (Figure 4). Draw a horizontal line at the maximum tolerable

variance, and drop a perpendicular from the point at where it intercepts the curve to the abscissa.
The value on the abscissa is the optimum size of sample.
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a) b)

Kriging variance

Grid spacing Grid spacing

Figure 102. Kriging variances from (a) punctual kriging, and (b) block kriging.

10+

Figure 103. Graphs of standard error plotted against sample size for bulking from 4, 9, 16, 25, 36
and 49 cores, and for three different sample supports.
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APPENDIX I

Correlation matrix for the 126 hyperspectral bands.

F-N- IS N WY B 2 S

1.000

1.000
0.996
0.994
0.990
0.982
0.951
0.923
0.921
0.942
0.949
0.948
0.945
0.943
0.942
0.938
0.930
0.848
0.568
0.266
0.130
0.086
0.072
0.068
0.066
0.064

0.054
0.049
0.044
0.042
0.044
0.044
0.048
0.056
0.063
0.083
0.089
0.089
0.083
0.076
0.065
0.058
0.053
0.051
0.054
0.063
0.082
0.115
0.160
0.187
0.198
0.208
0.210
0.202
0.191
0.184
0.182
0.185
0.195
0.215
0.243
0.278
0.285
0.146

1.000
0.995
0.966
0.940
0.940
0.964
0.973
0.974
0973
0.971
0.970
0.966
0.960
0.876
0.582
0.264
0.120
0.074
0.059
0.056
0.054

1.000
0.995
0.994
0.994
0.987
0.980
0.971
0.961
0.949
0.937
0.939
0.941
0.744
0.464
0.322
0.273
0.258

1.000
0.999
0.991
0.978
0.969
0.957

0.928
0.914

0.462
0.485
0.513
0.515
0.151

137

137




0.650
0.649

0.776
0.783
0.786
0.789
0.786
0.784
0.779
0.772
0.764
0.754
0.751
0.753
0.758
0.769
0.775
0.772
0.770
0.766
0.767
0.776
0.777
0.782
0.773
0.780
0.766
0.753
0.498

10
1.000
0.997
0.992
0.985
0.976

0272
0.542
0.691
0.740
0.737
0.724
0.711
0.694
0.675
0.657
0.641
0.626
0.613
0.601
0.590
0.582
0.575
0.572
0.573
0.576
0.579
0.588
0.599
0.608
0.616
0.622
0.631
0.639
0.643
0.644
0.632
0.630
0.822
0.835
0.831
0.822
0.837
0.841
0.841
0.841
0.836
0.831
0.824
0.814
0.803
0.790
0.786
0.788
0.794
0.810
0.818
0.819
0.817
0.815
0.821
0.833
0.838
0.846
0.843
0.851
0.840
0.827
0.556

11

1.000
0.998
0.995
0.990

0.274
0.548
0.704
0.755
0.751
0.739
0.725
0.707
0.688
0.669
0.653
0.638
0.624
0.612
0.601
0.592
0.586
0.583
0.584
0.587
0.590
0.599
0.610
0.620
0.628
0.634
0.643
0.651
0.655
0.656
0.644
0.646
0.841
0.852
0.846
0.840
0.853
0.857
0.857
0.856
0.851
0.846
0.839
0.830
0.819
0.806
0.802
0.803
0.810
0.825
0.833
0.835
0.834
0.832
0.838
0.849
0.855
0.862
0.860
0.868
0.857
0.844
0.571

12

0.273
0.553
0.713
0.765
0.761
0.749
0.735
0.717
0.697
0.678
0.661
0.646
0.632
0.620
0.609
0.600
0.594
0.591
0.592
0.595
0.598
0.607
0.618
0.628
0.637
0.643
0.651
0.659
0.664
0.665
0.653
0.654
0.852
0.863
0.858
0.852
0.864
0.867
0.868
0.867
0.862
0.857
0.850
0.841
0.829
0.817
0.812
0.814
0.820
0.836
0.844
0.846
0.844
0.843
0.849
0.860
0.867
0.873
0.872
0.879
0.868
0.855
0.580

13

1.000
0.997

0274
0.558
0.722
0.775
0.771
0.759
0.746
0.728
0.709
0.690
0.674
0.659
0.645
0.633
0.622
0.613
0.607
0.604
0.605
0.608
0.611
0.621
0.632
0.641
0.650

0.876
0.882
0.880
0.887
0.876
0.862
0.583

14

1.000

0.279
0.567
0.735
0.789

0.766
0.751

0.868
0.869

0.884
0.881
0.886
0.873
0.858
0.579

15

0.870
0.863
0.854
0.852
0.853
0.858
0.867
0.871
0.869
0.865
0.861
0.861
0.865
0.863
0.865
0.856
0.859
0.843
0.826
0.551

16

0.282

0.801
0.796
0.789
0.782
0.776
0.769
0.762
0.757
0.750
0.746
0.742
0.741
0.744
0.747
0.749
0.756
0.762
0.769
0.774
0.775
0.779
0.782
0.783
0.782
0.765
0.602
0.792
0.809
0.811
0.819
0.837
0.849
0.859
0.866
0.869
0.871
0.870
0.867
0.862
0.855
0.853
0.854
0.858
0.865
0.867
0.864

0.859 -

0.854
0.852
0.853
0.849
0.848
0.838
0.839
0.821
0.804
0.533

17

0.289
0.581
0.755
0.810
0.814
0.814
0.811
0.806
0.798
0.790
0.783
0.777
0.770
0.764
0.757
0.752

0.544

138

138




B |

0.990
0.983
0.984
0.950
0.692
0.367
0212
0.162
0.146
0.144
0.143
0.144
0.139
0.134
0.133
0.136
0.137
0.141
0.152
0.160
0.184
0.192
0.193
0.187
0.179
0.168
0.162
0.156
0.155
0.158
0.168
0.188
0.231
0.281
0.311
0.322
0.333
0.336
0.328
0.315
0.308
0.306
0.310
0.320
0.341
0.370
0.405
0.409
0.150
0.294
0.603
0.787
0.846
0.844
0.837
0.829
0.816
0.801
0.786
0.773
0.761
0.749
0.739
0.729
0.722
0.716
0.714
0.715
0.718
0.721

0.291
0.302
0.323
0.354

0.786
0.769
0.754
0.740
0.728
0.717
0.708
0.702
0.698
0.699
0.702
0.705

139

139




120
121
122
123
124
125
126

0.740
0.748
0.756
0.762
0.766
0.771
0.776
0.779
0.778
0.762
0.639
0.841
0.857
0.858
0.861
0.877
0.886
0.893
0.897
0.898
0.898
0.896
0.891
0.884
0.876
0.873
0.875
0.880
0.889
0.893
0.892
0.888
0.885
0.885
0.889
0.887
0.888
0.879
0.882
0.865
0.848
0.566

19
1.000
0.912
0.821
0.783
0.775
0.773
0.773
0.775
0.773
0.770
0.771
0.773
0.773
0.772
0.785
0.783
0.803
0.809
0.810
0.805
0.799
0.794
0.792
0.789
0.789
0.790

0.727
0.737
0.745
0.752
0.756
0.763
0.769
0.772
0.772
0.758
0.657
0.866
0.883
0.883
0.882
0.897
0.904
0.908
0.912
0911
0.910
0.906
0.901
0.893
0.884
0.882
0.883
0.889
0.899
0.904
0.903
0.901
0.89%
0.900
0.905
0.905
0.907
0.899
0.903
0.887
0.869
0.581

20

1.000
0.982
0.965
0.963
0.962
0.961
0.962
0.961
0.959
0.959
0.959
0.959
0.954
0.963
0.956
0.966
0.967
0.966
0.963
0.960
0.959
0.960
0.958
0.958
0.957

0.729
0.739
0.747
0.755

0.923
0.922
0.920
0.916
0911
0.903
0.894
0.891
0.893
0.898
0.909
09514
0914
0912
0.910
0.913
0.918
0.918
0.921
0.914
0.917
0.901
0.883
0.593

21

1.000
0.997
0.996
0.996
0.995
0.995
0.994
0.993
0.992
0.992
0.992
0.988
0.991
0.985
0.988
0.985
0.984
0.984
0.982
0.983
0.984
0.983
0.982
0.981

0.727
0.737
0.746
0.753
0.759
0.766
0.773
0.777
0.777
0.762
0.689
0.900
0.913
0911
0.912
0.923
0.928
0.930
0.931
0.929
0.927
0.923
0.917
0910
0.901
0.898
0.899
0.905
0.915
0.921
0.922
0.921
0.919
0.922
0.927
0.929
0.931
0.926
0.928
0914
0.895
0.605

22

1.000
0.998
0.999
0.999
0.998
0.997
0.996
0.995
0.995
0.996
0.994
0.991
0.991
0.988
0.983
0.983
0.985
0.985
0.985
0.985
0.985
0.983
0.983

0.722
0.732
0.741
0.749
0.755
0.763
0.771
0.776
0.776
0.762
0.682
0.903
0.924
0.924
0.916
0.932
0.934
0.935
0.936
0.933
0.930
0.926
0.920
0.913
0.903
0.900
0.902
0.907
0917
0.923
0.924
0.924
0.923
0.925
0.932
0.933
0.938
0.929
0.935
0.918
0.899
0.598

23

1.000
0.999
0.999
0.999
0.998
0.998
0.998
0.997
0.996
0.991
0.995
0.987
0.989
0.986
0.986
0.985
0.983
0.985
0.986
0.985
0.985
0.983

0.714
0.724
0.734
0.742
0.748
0.757
0.766
0.771
0.771
0.758
0.699
0.920
0.937
0935
0.929
0.941
0.943
0.942
0.942
0.938
0.935
0.930
0.924
0.916
0.906
0.903
0.904
0.910
0.920
0.927
0.929
0.929
0.929
0.933
0.940
0.942
0.946
0.941
0.945
0.930
0911
0.613

24

0.708
0.719
0.728
0.737
0.744
0.753
0.762
0.768
0.769
0.755
0.708
0.930
0.947
0.944
0.937
0.948
0.949
0.947
0.946
0.941
0.937
0.932
0.925
0917
0.908
0.905
0.906
0911
0.922
0.929
0.932
0.932
0.933
0.938
0.945
0.948
0.952
0.947
0.952
0.938
0918
0.619

25

1.000
1.000
1.000
0.999
0.999
0.999
0.999
0.996
0.996
0.993
0.992
0.988
0.988
0.989
0.988
0.989
0.990
0.989
0.988
0.987

0.730
0.740
0.750
0.758
0.764
0.773
0.782
0.787
0.788
0.774
0.714
0.934
0.950
0.947
0.944
0.953
0.955
0.954
0.953
0.949
0.946
0.941
0.935
0.928
0.919
0.916
0918
0.923
0.932
0.938
0.941
0.941
0.941
0.946
0.952
0.954
0.957
0.952
0.955
0.940
0.920
0.623

26

1.000
1.000
1.000
0.999
0.999
0.999
0.996
0.997
0.993
0.993
0.990
0.990
0.990
0.990
0.991
0.991
0.991
0.990
0.989

0.864
0.868

0.877
0.880

0.898
0.880

0.544

1.000
1.000
1.000
1.000
0.999
0.996
0.998
0.994
0.994
0.991
0.991
0.991
0.991
0.992
0.992
0.992
0.991
0.990

140

140



0.956
0.954
0.964

0.305
0.288
0.271

0255
0248

0.213

0.170
0.188
0.202
0.215
0.227
0.241
0.256
0.263
0.263
0.255
0.238
0.220

0.987
0.983
0.976
0.960
0.946
0.941
0.935
0.933

0.939
0.939

141

141




115
116
117
118
119
120
121
122

124
125
126

0.254
0.244
0.232
0.209
0.189
0.162
0.145
0.116
0.103
0.079
0.068
0.023

30

0.941
0.944
0.945
0.944
0.942
0.935
0.924
0.907
0.882
0.862
0.082
0.117
0.197
0.252
0.270
0.295
0.328
0.361
0.397
0.433
0.465
0.492
0.516
0.535
0.551
0.562
0.573
0.581
0.585
0.585
0.584

0.209
0.199
0.186
0.164
0.143
0.117
0.098
0.071
0.057
0.036
0.026
-0.003

31

0.195
0.185
0.173
0.150
0.130
0.103
0.086
0.057
0.044
0.021
0.012
-0.016

32

0.196
0.186
0.174
0.150
0.130
0.104
0.086
0.057
0.044
0.022
0.012
-0.014

33

0.203
0.193
0.181
0.158
0.137
0.110
0.092
0.064
0.050
0.027
0.017
<0.011

35

142

142



114
115
116
117
118
119
120
121
122

124
125
126

0.573

0.575
0.567
0.553
0.543
0.533
0.523
0.511
0.499
0.489
0.484
0.466
-0.021
-0.016
0.001
0.025
0.064
0.089
0.117
0.145
0.167
0.185
0.199
0.212

0.239
0.254

0.581
0.573
0.559
0.549
0.539
0.530
0.517
0.505

0.582
0.574
0.560
0.550
0.540
0.530
0518
0.506
0.495
0.490
0.472
-0.016
-0.010
0.007
0.030
0.071
0.094
0.122
0.151
0.173
0.191
0.205
0.218
0.231
0.245
0.260
0.267
0.268
0.260
0.241
0.224
0.206
0.196
0.185
0.161
0.141
0.113
0.095
0.066
0.052
0.029
0.018
-0.009

40

0.593
0.584
0.570
0.560
0.550
0.540
0.527
0.515
0.504
0498
0.479
-0.007
0.000
0.015
0.039
0.082
0.103
0.132
0.161
0.182
0.201
0214
0.227
0.240
0.255
0.270
0277
0.277
0.269
0.251
0.233
0216
0.206
0.194
0.171
0.150
0.123
0.103
0.075
0.061
0.039
0.028
0.001

41

0.602

0.580
0.571

1.000
1.000
1.000
0.999
0.996
0.993
0.981
0.970
0.967
0.963
0.962
0.964
0.967
0.968
0.968
0.966
0.961
0.951
0.936
0.914

0.077
0.029

44

0.650

0.629
0.620

1.000
0.999
0.993
0.982
0.972
0.971
0.969
0.967
0.969
0.973
0.974
0.974
0.972
0.968
0.959
0.946
0.926

143

143




1.000
0.997

1.000

0.638
0.642
0.642
0.641
0.638
0.630
0.616
0.607
0.597
0.587
0.575
0.564
0.553
0.548
0.528
0.021
0.044
0.063
0.088
0.129
0.152
0.179
0.207
0.229
0.247
0.261
0274
0.288
0.303
0.319
0.326
0.326
0.317
0.298
0.280
0.262
0.253
0.242
0.218
0.197
0.169
0.150
0.120
0.105
0.081
0.068
0.024

49

0.895
0.082
0.127
0.228
0.299
0.324
0.348
0.383
0.416
0.453
0.488
0.519
0.547
0.569
0.588
0.603
0.615
0.625
0.633
0.637
0.637
0.635
0.632
0.625
0.610
0.601
0.591
0.582
0.570
0.558
0.548
0.543
0.523
0.014
0.037
0.057
0.081
0.122
0.145
0.172
0.200
0222
0.240
0.254
0.267
0.281
0.296
0.312
0.319
0.320
0.311
0.291
0.273
0.255
0.246
0.235
0.211
0.190
0.162
0.143
0.113
0.098
0.074
0.061
0.018

50

0.900

0.019

0.187
0215
0236
0255
0268
0.281
0295
0311
0327
0335
0.335
0.326
0.305
0.287
0270
0261
0250
0227
0.205
0.177
0.158
0.128
0.113
0.088
0.074
0.031

54

144

144



-----------T

118

0.974
0.974
0.974

0.992
0.990
0.986
0.986
0.987
0.989
0.988
0.988
0.988
0.984
0.978
0.967
0.949
0.927

0.756
0.750
0.736
0.728
0.720
0.712
0.702
0.693
0.684
0.680
0.658
0.122
0.184
0.210
0.235
0.273
0.299
0.324
0.351
0.372
0.390
0.404
0417
0431
0.446
0.461
0.469
0.469
0.460
0.440
0.422
0.405
0.396
0.387
0.362

1.000
0.999
0.996
0.997
0.997
0.997
0.995
0.995
0.996
0.994
0.992
0.987
0.973
0.950
0.109
0.182
0.353
0.467
0.507
0.530
0.562
0.594
0.629
0.660
0.688
0.711
0.731
0.746
0.759
0.768
0.777
0.783

1.000
0.999
0.999
0.999
0.999
0.998
0.998
0.998
0.997
0.995
0.991
0.980

1.000
1.000
0.999
0.999
0.999
0.999
0.998
0.995
0.985
0.968
0.118
0.197
0.375
0.495
0.533
0.557
0.591
0.621
0.655
0.685
0.712
0.735
0.754

0.424

1.000
1.000
1.000
1.000
0.999
0.998
0.994
0.985
0.968
0.118
0.195
0.369
0.487
0.524
0.547
0.581
0.612
0.646
0.677
0.704
0.727
0.746
0.761
0.774
0.783
0.792
0.798
0.800
0.800
0.799
0.796
0.790

0.762
0.755

145

145




0.227
0.200
0.180
0.151
0.135
0.111
0.097
0.049

55
1.000
1.000
0.999
0.999
0.998
0.994
0.985
0.970
0.120
0.197
0.369
0.484
0.520
0.543
0.578
0.609
0.642
0.673
0.700
0.723
0.742
0.758
0.770
0.780
0.788
0.794
0.797
0.797
0.795
0.793
0.786
0.775
0.766
0.758
0.751
0.741
0.731
0.722
0.717
0.694
0.163
0233
0.257
0.282
0.323
0.344
0.369
0.396
0416
0.433
0.447
0.460
0474
0.490
0.506
0.513
0.513
0.503
0.483
0.465

0.280
0.251
0.233
0.201
0.186
0.159
0.142
0.069

56

0.378
0.349
0.331
0.297
0.282
0.253
0.233
0.127

58

0.392
0.364
0.345
0.312
0.297
0.267
0.248
0.140

59

1.000

0.411
0.382
0.363
0.330
0.315
0.286
0.266
0.155

61

0.403
0.374
0.355
0.323
0.307
0.278
0.258
0.150

62

1.000
0.155
0.256
0.467
0.607
0.640
0.662
0.700
0.725
0.750
0.775
0.797
0.815
0.828
0.843
0.852
0.861
0.866
0.870
0.872
0.871
0.869
0.869
0.861
0.854
0.846
0.840
0.834
0.824
0.814
0.807
0.798
0.774
0.288
0.379
0.393
0414
0.464
0.474
0.498
0.524
0.539

0.556 -

0.567
0.579
0.592
0.606
0.624
0.629
0.628
0.619
0.600
0.582

0.391
0.363
0.344
0.311
0.296
0.267
0.247
0.143

63

146

146




115
116
117
118
119
120
121
122
123
124
125
126

0.449
0.440
0431
0.407
0.386
0.358
0.338
0.306
0.291
0.262
0.242
0.142

0.447
0.439
0.429
0.406
0.384
0.356
0.337
0.305
0.289
0.260
0.241
0.139

65

1.000
0.843
0.780
0.775
0.744

0.708
0.700

0.452
0.444
0.435
0.411
0.390
0.362
0.343
0.310
0.295
0.265
0.245
0.140

66

1.000
0.955
0.954
0.943
0.930
0918
0910

0.525
0.517
0.508
0.486
0.465
0.438
0418
0.387
0.371
0.342
0.320
0.196

69

0.570
0.562
0.552
0.534
0.510
0.487
0.464
0.440
0.422
0.395
0.375
0.252

71

0.192
0.192
0.183
0.186
0.180
0.178
0.170
0.181
0.170
0.177
0.178
0.162

72

1.000
0.999
0.997
0.994
0.991
0.987
0.984
0.982
0.979
0.977
0.977
0.976
0.977
0.979
0.981
0.983
0.985
0.987
0.990
0.991
0.992
0.990
0.966
0.641
0.843
0.866
0.879
0.899
0.910
0.920
0.929
0.935
0.942
0.946
0.951
0.956
0.962
0.968
0.971
0.970
0.966
0.957
0.950
0.945
0.943
0.940
0.931
0.921

147

147




0.340
0.327
0.339
0.327
0.327

0.257

0.681
0.670
0.673
0.663
0.652
0.636
0.464

1.000
1.000
1.000
0.999

0.892
0.879
0.877
0.865
0.849
0.825
0.585

75

1.000
1.000
0.999

0.951

0.903
0.877
0.599

76

1.000
0.999

1.000
1.000
0.999
0.999
0.998
0.998
0.998
0.998
0.998
0.998
0.998
0.998
0.998
0.997
0.996
0.995
0.991
0.967
0.570

0.781
0.799

1.000

0.937
0.927
0913
0.904
0.879
0.851
0.579

79

0.924
0914
0.896
0.888
0.860
0.832
0.557

80

0.908
0.898
0.877
0.869
0.841
0.812
0.540

81

148

148




—

126

0.998
0.997
0.996
0.995

0.927
0.935
0.942
0.949
0.952
0.951
0.946
0.935
0.928
0.919
0.916
0.912
0.898

0.998
0.997
0.997
0.995
0.993
0.991
0.986
0.962
0.543
0.722
0.749
0.767
0.794
0.810

0.939
0.931

0.903

0.999
0.998
0.998
0.997
0.995
0.992
0.98%
0.965
0.548
0.731
0.758
0.776
0.803
0.819
0.834
0.850
0.862
0.874
0.883
0.891
0.900
0.909
0918
0.921
0.920
0914
0.902
0.892
0.883
0.877
0.872
0.857
0.843
0.824
0.810
0.784
0.772
0.741
0.712
0.463

94

1.000
0.999
0.999
0.997
0.995
0.993
0.989
0.965
0.561
0.743
0.768
0.785
0.813
0.827
0.843
0.858
0.870
0.882
0.890
0.899
0.907
0.916
0.925
0.928
0.926
0.921
0.909
0.899
0.891
0.886
0.880
0.866
0.852
0.833
0.819
0.794
0.782
0.752
0.723
0.473

95

1.000
0.803
0.754
0.741
0.778
0.738
0.743
0.743
0.730
0.729
0.721
0.717
0.713
0.708
0.709
0.705
0.704
0.710
0.718
0.718
0.730
0.731
0.725
0.741

1.000
1.000
0.999
0.998
0.997
0.995
0.991
0.967

0.897
0.905
0913
0.922
0.930
0.933
0.932
0.926
0.915
0.906
0.897
0.892
0.886
0.872
0.859
0.841
0.827
0.802
0.791
0.760
0.731
0477

96

1.000
0.984
0.973
0.989
0.972
0.971
0.967
0.958
0.953
0.946
0.941
0.937
0.931
0.928
0.925
0.924
0.928
0.935
0.938
0.946
0.949
0.949
0.961

0.920
0911
0.903
0.898
0.893
0.879
0.866
0.848
0.834
0.810
0.799
0.768
0.739
0.485

97

1.000

1.000
0.999
0.998
0.997
0.993
0.970
0.579
0.768
0.794
0.810
0.836
0.850
0.865
0.879
0.890
0.900
0.908
0916
0.923
0.932
0.939
0.942
0.941
0.936
0.925
0.916
0.908
0.903
0.898
0.885
0.872
0.855
0.842
0.818
0.807
0.776
0.747
0.489

98

1.000
0.999
0.998
0.995
0.972
0.584
0.778
0.805
0.821
0.844
0.860
0.873
0.887
0.898
0.907
0.915
0.922
0.929
0.937
0.945
0.947
0.946
0.941
0.931
0.922
0914
0.910
0.905
0.892
0.880
0.863
0.851
0.826
0.816
0.786
0.756
0.494

929

149

149



119
120
121
122

124
125
126

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

126

118
119
120
121
122
123
124
125
126

0.893
0.876
0.866
0.841
0.832
0.802
0.771
0.501

119

1.000
0.994
0.993
0.984
0.983
0.962
0.938
0.638

0.893
0.876
0.866
0.840
0.832
0.801
0.771
0.496

102

1.000
0.992
0.987
0.986
0.967
0.944
0.650

0.875
0.858
0.849
0.824
0.816
0.786
0.758
0.489

103

1.000
0.999
0.998
0.996
0.995
0.994
0.990
0.986
0.979
0.973
0.960
0.956
0.932
0.905
0.610

121

1.000
0.985
0.986
0.967
0.943
0.638

0.734
0.749
0.732
0.762
0.746
0.749
0.736
0.592

104

1.000
0.999
0.999
0.998
0.996
0.993
0.993
0.993
0.994
0.996
0.997
0.997
0.996
0.995
0.994
0.994
0.991
0.987
0.977
0.975
0.954
0.929
0.629

113

1.000
0.999
0.998
0.997
0.995
0.993
0.990
0.984
0.978
0.966
0.962
0.940
0.914
0.618

122

1.000
0.983
0.968
0.947
0.664

0.961
0.971
0.965
0.976
0.971
0.961
0.940
0.678

105

1.000

1.000
0.999
0.998
0.995
0.995
0.995
0.996
0.997
0.998
0.997
0.996
0.995
0.993
0.992
0.988
0.985
0.973
0.971
0.949
0.923
0.622

114

1.000
0.968
0.947
0.650

1.000

1.000
0.999
0.997
0.996
0.996
0.997
0.998
0.998
0.997
0.996
0.994
0.992
0.991
0.986
0.982
0.970
0.967
0.944
0.918
0.617

115

1.000
0.998
0.997
0.996
0.993
0.989
0.984
0.974
0.970
0.949
0.924
0.631

124

1.000
0.935
0.657

1.000
0.999
0.998
0.998
0.998
0.998
0.998
0.998
0.996
0.995
0.993
0.991
0.989
0.983
0.979
0.966
0.963
0.939
0.913
0.613

116

1.000
0.998
0.997
0.995
0.990

1.000
0.650

0.985
0.989
0.984
0.986
0.982
0.967
0.943
0.663

108

1.000
0.997
0.995
0.991
0.987
0.976
0.974
0.952
0.927
0.628

126

1.000

150

150




